
NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE MATERIALS

EC 206: COMPUTER ORGANISATION

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Provide well versed, communicative Electronics Engineers with skills in Communication systems with

corporate and social relevance towards sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets

(things) are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields

of interest later.

4) Promoting leading edge Research & Development through collaboration with academia &

industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1. To prepare students to excel in postgraduate programmes or to succeed in industry / technical

profession through global, rigorous education and prepare the students to practice and innovate recent

fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering

fundamentals required to solve engineering problems and to have strong practical knowledge required

to design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze,

design, and create novel products and solutions for the real life problems.

PEO4. To provide student with an academic environment aware of excellence, effective

communication skills, leadership, multidisciplinary approach, written ethical codes and the life-long

learning needed for a successful professional career.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Facility to apply the concepts of Electronics, Communications, Signal processing, VLSI,

Control systems etc., in the design and implementation of engineering systems.

PSO2: Facility to solve complex Electronics and communication Engineering problems, using

latest hardware and software tools, either independently or in team.optimization.

COURSE OUTCOMES
EC 206

SUBJECT CODE: EC 206

COURSE OUTCOMES

C206.1 Ability to illustrate the understanding of the functional units of a computer.

C206.2 Ability to Identify the different types of instructions.

C206.3 Ability to illustrate signal space representation of signal using Gram Schmidt
orthonormalisation procedure.

C206.4 Ability to understand the various addressing modes.

C206.5 Ability to understand the I/O addressing system.

C206.6 Ability to Categorize the different types of memories.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C206.1 3 1

C206.2 2 3 3 2 2 1

C206.3 2 3 3 3 2 3 2 2 1

C206.4 3 3 3 3 1

C206.5 3 2 1

2066 3 3 2 1

C206 2 3 3 3 2 3 2 2 2 1

CO’S PSO1 PSO2 PSO3

C206.1

C206.2 3

C206.3 3 3 2

C206.4 3 3 2

C206.5

C206.6

C206 3 3 2

SYLLABUS

Course

code

Course Name L-T-P -

Credits

Year of

Introduction

EC206 COMPUTER ORGANISATION 3-0-0-3 2016

Prerequisite: EC207 Logic Circuit Design

Course Objectives

 To impart knowledge in computer architecture.

 To impart knowledge in machine language programming.

To develop understanding on I/O accessing techniques and memory structures.

Syllabus

Functional units of a computer, Arithmetic circuits, Processor architecture, Instructions and
addressing modes, Execution of program, Micro architecture design process, Design of data path
and control units, I/O accessing techniques, Memory concepts, Memory interface, Cache and
Virtual memory concepts.

Expected outcome .

The students will be able to:

i. Understand the functional units of a computer

ii. Identify the different types of instructions

iii. Understand the various addressing modes

iv. Understand the I/O addressing system

v. Categorize the different types of memories

Text Books:

1. David A. Patterson and John L. Hennessey, Computer Organisation and
Design, Fourth Edition, Morgan Kaufmann

2. David Money Harris, Sarah L Harris, Digital Design and
Computer Architecture,M Kaufmann – Elsevier, 2009

References

1. Carl Hamacher : “Computer Organization ”, Fifth Edition, Mc Graw Hill

2. John P Hayes: “Computer Architecture and Organisation”, Mc Graw Hill

3. William Stallings: “Computer Organisation and Architecture”, Pearson Education

4. Andrew S Tanenbaum: “Structured Computer Organisation”, Pearson Education

5. Craig Zacker: “PC Hardware : The Complete Reference”, TMH

Course Plan

Module Contents Hours
Sem.
Exam
Marks

I

Functional units of a computer
Arithmetic Circuits: Adder-carry propagate adder, Ripple carry
adder, Basics of carry look ahead and prefix adder, Subtractor,

Comparator, ALU

4

15%

Shifters and rotators, Multiplication, Division 3

Number System: Review of Fixed point & Floating point number
system

1

II

Architecture : Assembly Language, Instructions, Operands,
Registers, Register set, Memory, Constants

2
15%

Machine Language: R-Type, I-Type, J-Type Instructions,
Interpreting machine language code

3

FIRST INTERNAL EXAMINATION

III MIPS Addressing modes – Register only, Immediate, Base, PC-
relative, Pseudo - direct

3 15%

 MIPS memory map, Steps for executing a program - Compilation,

Assembling, Linking, Loading
3

Pseudo instructions, Exceptions, Signed and Unsigned instructions,
Floating point instructions

3

IV

MIPS Microarchitectures – State elements of MIPS processor 1
15%

Design process and performance analysis of Single cycle

processor, Single cycle data path, Single cycle control for R – type
arithmetic/logical instructions.

3

Design process and performance analysis of multi cycle processor,

Multi cycle data path, Multi cycle control for R – type
arithmetic/logical instructions.

3

ECE DEPARTMENT, NCERC PAMPADY

Question Paper Pattern (End Sem Exam)

Maximum Marks: 100 Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers

modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly

covering the two modules and each question can have maximum four subdivisions. In each part, any

two questions are to be answered. Mark patterns are as per the syllabus with maximum80 % for

theory and 20% for logical/numerical problems, derivation and proof.

ECE DEPARTMENT, NCERC PAMPADY

QUESTION BANK

Module-1:

1. Perform the following shift operations on 8-bit binary representations of the decimal

numbers and hence verify the shift rules (wherever applicable):

(a) 4 << 4 (b) 16 << 2 (c) -32 >>> 4 (d) 64 >> 4 (e) 64 O>> 2 (f) 32 <<O 5

2. Implement a two Operand 8-bit Equality Comparator for the numbers A and B

represented in 8-bit binary. State the rule for the operations.

3. Implement a 32-bit Carrylookahead Adder, starting from the 4-bit Adder. Clearly depict

the logic diagrams with the supporting analyses. Compute the overall delay of the Adder.

4. From first principles, construct a Carry Prefix Adder with logic diagram and supporting

analyses. Estimate the delay of the Adder.

5. Implement a 32-bit Adder using Ripple Carry Adder. Explain operation. Estimate the

total delay.

6. Construct an 8-bit Array Multiplier to handle 8-bit Multiplicand and 8-bit Multiplier,

with the aid of a supporting binary example of the multiplication process. Estimate the

delay of the Multiplier.

7. Construct a non-restoring Divider as a Sequential circuit with the aid of a supporting

example of division and the control flow process for the operation.

8. Construct a Multiplier as a Sequential circuit with the aid of a supporting example of

multiplication and the control flow process for the operation.

9. Perform the implementation of 4-bit Rotators for ROL and ROR operations on an 4-bit

operands A to yield Y, with proper use of the shamt bits.

10. Represent the two decimal numbers 7.875 and 0.1875 in the IEEE 754 standard single

precision floating point number format and perform the Addition of the numbers with

final representation of the result in the same format.

11. Perform the implementation of 4-bit Shifters for LSL, LSR and ASR operations on an

4-bit operands A to yield Y, with proper use of the shamt bits.

12. Implement a two Operand 4-bit Magnitude Comparator for the numbers A and B

represented in 4-bit binary. State the rules for the operation.

13. Examine the operation of a modern Subtractor with the aid of a sketch and hardware

details.

14. Construct an eight-bit Equality Comparator from first principles and list the hardware

requirements. Does it validate the three Y’s?

15. Investigate the operation of a 4-bit Shifter with the aid of hardware representation

diagram with wirings for left shift, logical right shift and arithmetic right shift. How the

wiring would be tweaked to support Rotator?

16. Examine the Functional Units of a Computer with the aid of a sketch and hardware

details.

ECE DEPARTMENT, NCERC PAMPADY

17. Compare and Contrast RISC and CISC in the context of Computer Architectures, with

the help of examples.

18. Investigate the hardware of the ALU Implementation with symbol, functional table and

internal structure. Verify its adaptability in the context of modern computing.

19. Investigate the operation of an 8-bit Shifter with the aid of hardware representation

diagram for left shift, logical right shift and arithmetic right shift. How does it support

Rotation operation?

20. Give definitions of Computer Organization, Computer Architecture and Computer

Hardware. State examples of Computers.

21. Perform the following operations using 8-bit binary representations and justify the shift

rules: 16 << 2; -32>>>4;

22. Investigate the operation of the Carry Look Ahead Adder with the help of logic diagrams.

Calculate the delay for this Adder and compare with that of Ripple Carry Adder.

23. Compare the delays of a 32-bit ripple carry adder and a 32-bi5 carry look ahead adder

with 4-bit blocks. Assume each 2-i/p gate delay is 200ps and the FA delay is 400ps.

Module 1 and 2

1. With the help of a block diagram, describe the structure and functional operation of an

Digital Computer.

2. Write short notes on:

a. Differences between RAM and ROM

b. Computer Hardware

c. Computer Architecture

d. Assembly language and its relevance in the context of Computer Architecture

e. Logical Implementation of a Full Adder from Truth Table, K-Map Minimizations and

diagram.

f. Internal Registers of the Processor and their functions

3. Describe the principle and operation of Ripple Carry Adder with the aid of circuit

diagram and proper design. Estimate the delay in this circuit.

4. Perform the following shift operations on 8-bit binary representations of the decimal

numbers and hence verify the shift rules (wherever applicable):

(b) 4 << 4 (b) 16<<2 (c) -32 >>> 4 (d) 64 >> 4 (e) 64 O>> 2 (f) 32 <<O 5

5. Describe the principle and operation of Carry Lookahead Adder with the aid of circuit

diagram and proper design. Estimate the delay in this circuit.

6. Compare and contrast Ripple Carry Adder with Carry Lookahead Adder.

7. Describe the implementation of a 4-bit Multiplier using Array Multiplier with the aid of

all appropriate diagrams and supporting analyses. State the hardware requirements for n-

bit multiplication.

ECE DEPARTMENT, NCERC PAMPADY

8. Describe the implementation of a 4-bit Multiplier using Sequential Circuit Multiplier

with the aid of all appropriate diagrams and supporting analyses. State the hardware

requirements for n-bit multiplication.

9. Describe the implementation of a 4-bit Divider using Sequential Circuit Divider with the

aid of all appropriate diagrams and supporting analyses.

10. Explain the Shifters and Rotators by simple examples. Discuss the hardware

requirements. Implement 4-bit Shifters for logical and arithmetic operations.

11. Provide the logical implementation of the ALU with the aid of supporting analyses,

functional table and internal representation. Describe its operations. Suggest how Flags

could be made available.

12. Explain the Comparator circuit used in the Processor with implementation for the

different types. Choose 4-bit operands for your answer.

13. Describe how a Subtractor can be implemented in modern fast arithmetic circuits. Use

appropriate logic diagrams and other representations.

14. Estimate the delay of a 64-bit carry prefix adder assuming that each 2-input Gate has a

delay of 400 ps.

15. With the help of suitable examples, differentiate between the R-type and I-type

Instructions in MIPS machine language.

16. Illustrate the IEEE standard for single precision and double precision floating point

numbers.

17. Write short notes on:

a. MIPS Register Set.

b. Byte Addressable Memory.

c. Format of J-Instructions in MIPS machine language

18. Assume that opcode ‘addi’ is represented by 810, register ‘add’ function is represented by

the function code 3210, and register s0 to s7 are represented by 1610 to 2310, in MIPS

Machine language.

a. Translate the following machine language code into MIPS assembly language:

0x2237FFF3

b. Translate the following MIPS assembly code into MIPS machine code in hex format:

add $s0, $s4, $s5

19. Describe the structure of the N-bit Non-restoring Divider as a sequential circuit with the

help of appropriate logic diagram and illustrations with analyses.

20. Translate the following high-level code into assembly language. Assume variables a to

c are held in registers $s0 to $s2 and f to j are in $s3 to $s7.

 a = b - c;

 f = (g + h) - (i + j);

21. Describe the types of Digital Computers and the factors involved in comparing their

performance.

ECE DEPARTMENT, NCERC PAMPADY

22. Investigate how the arithmetic operations of Addition/Subtraction and Multiplication are

performed on floating point operands within the Processor.

Module 3 and 4

23. Describe the Addressing Modes of the MIPS with the aid of examples of Instructions for

each type.

24. What is meant by Microarchitecture? Explain the relevance with regards to MIPS

architecture.

25. Explain the Performance Analysis of Computer systems.

26. Explain the MIPS Memory Map with the help of a diagram, stating lucidly the various

sections or segments and their properties and functions.

27. With the aid of a diagram, describe the steps involved in translating and executing a high

level language program.

28. Describe the Pseudo-instructions used in MIPS architecture with the help of four

examples. Decompose the same into legitimate MIPS instructions.

29. Describe the concept of Exception Processing and its implementation in MIPS

architecture.

30. Explain the signed and unsigned instructions of the MIPS for different categories of

Instructions with the aid of lucid examples.

31. Describe the Floating Point Instructions of the MIPS architecture with the help of

examples of instructions and their usage.

32. Compare and contrast the three microarchitectures used for MIPS architecture.

33. Derive the expression for Cycle Time in a Single Cycle MIPS processor. If the Cycle

time for a single cycle MIPS processor is 1000 pS, calculate the total execution time for a

program with 10 lakh instructions.

34. List the main drawbacks of Single Cycle Microarchitecture. How are they eliminated in

Multi Cycle Microarchitecture?

35. With the help of suitable examples, differentiate between the R-type and I-type

Instructions in MIPS machine language.

36. Illustrate the IEEE standard for single precision and double precision floating point

numbers.

37. Write short notes on:

d. MIPS Register Set.

e. Byte Addressable Memory.

f. Format of J-Instructions in MIPS machine language

38. Assume that opcode ‘addi’ is represented by 810, register ‘add’ function is represented by

the function code 3210, and register s0 to s7 are represented by 1610 to 2310, in MIPS

Machine language.

c. Translate the following machine language code into MIPS assembly language:

0x2237FFF3

ECE DEPARTMENT, NCERC PAMPADY

d. Translate the following MIPS assembly code into MIPS machine code in hex format:

add $s0, $s4, $s5

39. Describe the organization of the Datapath of a Single Cycle Microarchitecture for an lw

instruction. Support your answer with the aid of diagrams of the interconnections

between the State Elements.

40. Describe the organization of the enhanced or extended Datapath of a Single Cycle

Microarchitecture for inclusion of sw instruction, R-type instructions and beq

instructions. Support your answer with the aid of diagrams of the interconnections

between the State Elements.

41. Describe the organization of the Control unit of a Single Cycle Microarchitecture for an

lw instruction and extend the same for the other categories of Instructions.

42. Describe the organization of the Datapath of a Multi Cycle Microarchitecture for an lw

instruction and other categories of Instructions. Support your answer with the aid of

diagrams of the interconnections between the State Elements.

43. Describe the organization of the Control Unit of a Multi Cycle Microarchitecture for an

lw instruction and other categories of Instructions. Support your answer with the aid of

diagrams of the interconnections between the State Elements.

44. Derive the expression for CPI (M) and Cycle Time in a Multi Cycle MIPS processor. If

the Cycle time for a multi cycle MIPS processor is 1000 pS, calculate the total execution

time for a program with 10 lakh instructions. Compare and contrast this result with that of

Single Cycle Microarchitecture.

MODULE 5

1. State the various types of Input and Output devices that need to be used in a modern General

purpose or Embedded Computer, and provide details how I/O Capability is provided?

2. Explain how accessing I/O devices is made possible in modern Computer, with the aid of a

generic sketch.

3. Explain the relevance of Memory Mapped I/O.

4. State the need for I/O Device Interface and illustrate with the aid of a diagram the connections

between CPU and I/O devices.

5. State the modes of I/O Data Transfer.

6. Explain Programmed controlled I/O mechanism.

7. Explain Interrupt Driven I/O mechanism with the aid of a diagram.

8. What is DMA? How does it use Interrupts?

ECE DEPARTMENT, NCERC PAMPADY

9. Explain the DMA Controller Registers with the aid of diagrams.

10. Describe the DMA transfer with the aid of diagram and give details of the role of DMA

Controller.

11. What is a Port and what are the types? Explain.

12. Explain functions of I/O Interface.

13. What is the need for a standard for I/O device connections?

14. Describe the objectives of USB and provide technical details of the standard.

15. Describe PCI Bus with the aid of diagram and give its advantages and benefits.

16. Investigate the SCSI Bus and how its serves the purpose of efficient data transfer, with

details of a typical read operation.

17. Investigate Memory Hierarchy with the aid of a diagram and provide details of the different

layers.

18. Explain the characteristics of Memory.

19. Describe Static Memories with the aid of diagrams.

20. Describe Dynamic RAM with the aid of a diagram.

21. Provide the internal organization of a Dynamic Memory Chip with a diagram.

22. Compare and Contrast Asynchronous and Synchronous DRAMs.

 23. Explain the relevance of SIMMs and DIMMs in modern Computer Systems.

24. Compare and Contrast RAM and ROM by providing their inherent characteristics and

differences.

25. With the aid of a diagram, explain the ROM Cell.

26. Explain PROM, EPROM and EEPROM.

27. Describe Flash memory and Flash Cards.

28. Compare and Contrast Flash Drives and Hard Disk Drives.

ECE DEPARTMENT, NCERC PAMPADY

MODULE 6

1. State and explain the Principle of Locality.

2. State and explain the Locality of Reference.

3. Describe the Role of Cache memory w.r.t Memory Hierarchy.

4. With a diagram explain the Cache Memory Organization.

5. Define Cache Hit and Miss.

6. Explain the Cache Read process.

7. Compare the Cache Write- Write Through and Write Back a.k.a Copy back mechanism.

8. Define Cache Hit Rate ,Miss Rate, Ave Mem Access Time (AMAT)

9. Perform Cache Hit Rate ,Miss Rate, AMAT Calculations (Refer worked out questions in

notes)

10. What is meant by Mapping and Replacement?

11. Perform an Analysis of Direct Mapped Cache or Direct Mapping with the aid of diagram.

12. Perform an Analysis of Associative Cache Mapping with the aid of diagram.

13. Perform an Analysis of Set Associative Cache Mapping with the aid of diagram .

14. Explain the use of Write Buffer.

15. Perform an Analysis of Replacement Algorithms.

16. Compare the complexity of implementation of the replacement algorithms.

17. Explain the need for Virtual Memory in Computers.

18. Analyze the Virtual Memory Organization with the help of a diagram.

19. Explain the Virtual Address or Logical Address.

20. Describe the Memory Management Unit (MMU) with a diagram.

21. Describe the Address Translation mechanism.

22. Explain the Virtual Memory Address Translation

ECE DEPARTMENT, NCERC PAMPADY

23. Describe Paging with diagram.

24. Describe Translational Look aside Buffer (TLB) with diagram.

25. Explain Page Faults.

26. Describe the Segmentation with the help of a diagram.

27. Compare and contrast Paging and Segmentation.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 1

Introduction to Computer Organization

Computer Organization is concerned with the function and design of the various units or

sections of Digital Computers, that store and process information, receive information from

external sources and send computed results to external destinations.

Computer Architecture encompasses the specification of an Instruction Set and the hardware

units that implement Instructions.

Computer Hardware consists of Electronic circuits, Displays, Electronic, magnetic and optical

storage media, Electromechanical equipment and Communication facilities.

Computer Software is concerned with the System Software or Operating System that manages

the Hardware as well as the Application Software as well as Programming languages and

Utilities.

Digital Computer is a fast Electronic Calculating Machine that accepts digitize input

information, processes it according to a list of internally stored Instructions, and produces

resulting output information. The list of instructions is called computer program and the internal

storage is computer memory.

Computer Types

Since their introduction in the 1940s, digital computers have evolved into many different types

that vary widely in size, cost, computational power, and intended use. Modern computers can be

divided roughly into four general categories:

• Embedded computers are integrated into a larger device or system in order to automatically

monitor and control a physical process or environment. They are used for a specific purpose

rather than for general processing tasks. Typical applications include industrial and home

automation, appliances, telecommunication products, and vehicles. Users may not even be aware

of the role that computers play in such systems.

• Personal computers have achieved widespread use in homes, educational institutions, and

business and engineering office settings, primarily for dedicated individual use. They support a

variety of applications such as general computation, document preparation, computer-aided

design, audiovisual entertainment, interpersonal communication, and Internet browsing. A

number of classifications are used for personal computers.

Desktop computers serve general needs and fit within a typical personal workspace.

Workstation computers offer higher computational capacity and more powerful graphical display

capabilities for engineering and scientific work.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 2

Finally, Portable and Notebook computers provide the basic features of a personal computer in a

smaller lightweight package. They can operate on batteries to provide mobility.

• Servers and Enterprise systems are large computers that are meant to be shared by a potentially

large number of users who access them from some form of personal computer over a public or

private network. Such computers may host large databases and provide information processing

for a government agency or a commercial organization.

• Supercomputers and Grid computers normally offer the highest performance. They are the

most expensive and physically the largest category of computers. Supercomputers are used for

the highly demanding computations needed in weather forecasting, engineering design and

simulation, and scientific work. They have a high cost. Grid computers provide a more cost-

effective alternative. They combine a large number of personal computers and disk storage units

in a physically distributed high-speed network, called a grid, which is managed as a coordinated

computing resource. By evenly distributing the computational workload across the grid, it is

possible to achieve high performance on large applications ranging from numerical computation

to information searching.

There is an emerging trend in access to computing facilities, known as cloud computing.

Personal computer users access widely distributed computing and storage server resources for

individual, independent, computing needs. The Internet provides the necessary communication

facility. Cloud hardware and software service providers operate as a utility, charging on a pay-as-

you-use basis.

FUNCTIONAL UNITS OF A COMPUTER

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 3

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 4

Input Unit

Computers accept coded information through input units. The most common input device is the

keyboard. Whenever a key is pressed, the corresponding letter or digit is automatically translated

into its corresponding binary code and transmitted to the processor.

Many other kinds of input devices for human-computer interaction are available, including the

touchpad, mouse, joystick, and trackball. These are often used as graphic input devices in

conjunction with displays. Microphones can be used to capture audio input which is then

sampled and converted into digital codes for storage and processing. Similarly, cameras can be

used to capture video input. Digital communication facilities, via the Internet, can also provide

input to a computer from other computers and database servers.

Memory Unit

The function of the memory unit is to store programs and data. There are two classes of storage,

called primary and secondary.

Primary Memory

Primary memory, also called main memory, is a fast memory that operates at electronic speeds.

Programs must be stored in this memory while they are being executed. The memory consists of

a large number of semiconductor storage cells, each capable of storing one bit of information.

These cells are rarely read or written individually. Instead, they are handled in groups of fixed

size called words. The memory is organized so that one word can be stored or retrieved in one

basic operation. The number of bits in each word is referred to as the word length of the

computer, typically 16, 32, or 64 bits.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 5

To provide easy access to any word in the memory, a distinct address is associated with each

word location. Addresses are consecutive numbers, starting from 0, that identify successive

locations. A particular word is accessed by specifying its address and issuing a control command

to the memory that starts the storage or retrieval process.

Instructions and data can be written into or read from the memory under the control of the

processor. It is essential to be able to access any word location in the memory as quickly as

possible. A memory in which any location can be accessed in a short and fixed amount of time

after specifying its address is called a random-access memory (RAM). The time required to

access one word is called the memory access time. This time is independent of the location of the

word being accessed. It typically ranges from a few nanoseconds (ns) to about 100 ns for current

RAM units.

Cache Memory

As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is used to hold

sections of a program that are currently being executed, along with any associated data. The

cache is tightly coupled with the processor and is usually contained on the same integrated-

circuit chip. The purpose of the cache is to facilitate high instruction execution rates.

Secondary Storage

Although primary memory is essential, it tends to be expensive and does not retain information

when power is turned off. Thus additional, less expensive, permanent secondary storage is used

when large amounts of data and many programs have to be stored, particularly for information

that is accessed infrequently. Access times for secondary storage are longer than for primary

memory. A wide selection of secondary storage devices is available, including magnetic disks,

optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit

Most computer operations are executed in the arithmetic and logic unit (ALU) of the processor.

Any arithmetic or logic operation, such as addition, subtraction, multiplication, division, or

comparison of numbers, is initiated by bringing the required operands into the processor, where

the operation is performed by the ALU. For example, if two numbers located in the memory are

to be added, they are brought into the processor, and the addition is carried out by the ALU. The

sum may then be stored in the memory or retained in the processor for immediate use.

When operands are brought into the processor, they are stored in high-speed storage elements

called registers. Each register can store one word of data. Access times to registers are even

shorter than access times to the cache unit on the processor chip.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 6

Output Unit

The output unit is the counterpart of the input unit. Its function is to send processed results to the

outside world. A familiar example of such a device is a printer. Most printers employ either

photocopying techniques, as in laser printers, or ink jet streams. Such printers may generate

output at speeds of 20 or more pages per minute. However, printers are mechanical devices, and

as such are quite slow compared to the electronic speed of a processor.

Some units, such as graphic displays, provide both an output function, showing text and

graphics, and an input function, through touchscreen capability. The dual role of such units is the

reason for using the single name input/output (I/O) unit in many cases.

Control Unit

The memory, arithmetic and logic, and I/O units store and process information and perform input

and output operations. The operation of these units must be coordinated in some way. This is the

responsibility of the control unit. The control unit is effectively the nerve center that sends

control signals to other units and senses their states.

I/O transfers, consisting of input and output operations, are controlled by program instructions

that identify the devices involved and the information to be transferred. Control circuits are

responsible for generating the timing signals that govern the transfers and determine when a

given action is to take place. Data transfers between the processor and the memory are also

managed by the control unit through timing signals. It is reasonable to think of a control unit as a

well-defined, physically separate unit that interacts with other parts of the computer. In practice,

however, this is seldom the case. Much of the control circuitry is physically distributed

throughout the computer. A large set of control lines (wires) carries the signals used for timing

and synchronization of events in all units.

The operation of a computer can be summarized as follows:

• The computer accepts information in the form of programs and data through an input unit and

stores it in the memory.

• Information stored in the memory is fetched under program control into an arithmetic and logic

unit, where it is processed.

• Processed information leaves the computer through an output unit.

• All activities in the computer are directed by the control unit.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 7

ARITHMETIC CIRCUITS

Arithmetic circuits are the central building blocks of computers. Computers and digital logic

perform many arithmetic functions: addition, subtraction, comparisons, shifts, multiplication, and

division.

The Three-Y’s

Designers use the three “-y’s” to manage complexity: hierarchy, modularity, and regularity.

These principles apply to both software and hardware systems.

Hierarchy involves dividing a system into modules, then further sub-dividing each of these

modules until the pieces are easy to understand.

Modularity states that the modules have well-defined functions and interfaces, so that they

connect together easily without unanticipated side effects.

Regularity seeks uniformity among the modules. Common modules are reused many times,

reducing the number of distinct modules that must be designed.

These building blocks are not only useful in their own right, but they also demonstrate the

principles of Hierarchy, Modularity, and Regularity. The building blocks are hierarchically

assembled from simpler components such as logic gates, multiplexers, and decoders. Each

building block has a well-defined interface and can be treated as a black box when the

underlying implementation is unimportant. The regular structure of each building block is easily

extended to different sizes.

Addition

Addition is one of the most common operations in digital systems. We first consider how to add

two 1-bit binary numbers. We then extend to N-bit binary numbers. Adders also illustrate trade-

offs between speed and complexity.

Half Adder

We begin by building a 1-bit half Adder. As shown, the half Adder has two inputs, A and B, and

two outputs, S and Cout. S is the sum of A and B. If A and B are both 1, S is 2, which cannot be

represented with a single binary digit. Instead, it is indicated with a carry out Cout in the next

column. The half Adder can be built from an XOR gate and an AND gate.

In a multi-bit Adder, Cout is added or carried in to the next most significant bit. For example, the

carry bit is the output Cout of the first column of 1-bit addition and the input Cin to the second

column of addition. However, the half Adder lacks a Cin input to accept Cout of the previous

column.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 8

Full Adder

A full Adder accepts the carry in Cin as shown. The figure also shows the output equations for S

and Cout.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 9

Carry Propagate Adder

An N-bit Adder sums two N-bit inputs, A and B, and a carry in Cin to produce an N-bit result S

and a carry out Cout. It is commonly called a carry propagate Adder (CPA) because the carry out

of one bit propagates into the next bit. The symbol for a CPA is shown in Figure 5.4; it is drawn

just like a full Adder except that A, B, and S are busses rather than single bits. Three common

CPA implementations are called ripple-carry Adders, carry-look ahead Adders, and Prefix

Adders.

Ripple-Carry Adder

The simplest way to build an N-bit carry propagate Adder is to chain together N full Adders. The

Cout of one stage acts as the Cin of the next stage, as shown for 32-bit addition. This is called a

ripple carry Adder. It is a good application of modularity and regularity: the full Adder module is

reused many times to form a larger system. The ripple carry Adder has the disadvantage of being

slow when N is large. S31 depends on C30, which depends on C29, which depends on C28, and so

forth all the way back to Cin, as shown. We say that the carry ripples through the carry chain. The

delay of the Adder, t ripple, grows directly with the number of bits, where tFA is the delay of a full

Adder.

Carry-Look Ahead Adder

The fundamental reason that large ripple-carry Adders are slow is that the carry signals must

propagate through every bit in the Adder. A carry look ahead Adder (CLA) is another type of

carry propagate Adder that solves this problem by dividing the Adder into blocks and providing

circuitry to quickly determine the carry out of a block as soon as the carry in is known. Thus it is

said to look ahead across the blocks rather than waiting to ripple through all the full Adders

inside a block. For example, a 32-bit Adder may be divided into eight 4-bit blocks.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 10

CLAs use generates (G) and propagate (P) signals that describe how a column or block

determines the carry out. The ith column of an Adder is said to generate a carry if it produces a

carry out independent of the carry in. The ith column of an Adder is guaranteed to generate a

carry Ci if Ai and Bi are both 1. Hence Gi, the generate signal for column i, is calculated as

Gi = Ai.Bi. The column is said to propagate a carry if it produces a carry out whenever there is a

carry in. The ith column will propagate a carry in, Ci−1, if either Ai or Bi is 1. Thus, Pi = Ai + Bi.

Using these definitions, we can rewrite the carry logic for a particular column of the Adder. The

ith column of an Adder will generate a carry out Ci if it either generates a carry, Gi, or propagates

a carry in, Pi.Ci−1. In equation form,

The generate and propagate definitions extend to multiple-bit blocks. A block is said to generate

a carry if it produces a carry out independent of the carry in to the block. The block is said to

propagate a carry if it produces a carry out whenever there is a carry in to the block. We define

Gi:j and Pi:j as generate and propagate signals for blocks spanning columns i through j.

A block generates a carry if the most significant column generates a carry, or if the most

significant column propagates a carry and the previous column generated a carry, and so forth.

For example, the generate logic for a block spanning columns 3 through 0 is :

A block propagates a carry if all the columns in the block propagate the carry. For example, the

propagate logic for a block spanning columns 3 through 0 is:

Using the block generate and propagate signals, we can quickly compute the carry out of the

block, Ci, using the carry in to the block, Cj.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 11

A 32-bit carry-look ahead Adder is composed of eight 4-bit blocks. Each block contains a 4-bit

ripple-carry Adder and some look ahead logic to compute the carry out of the block given the

carry in, as shown.

The AND and OR gates needed to compute the single-bit generate and propagate signals, Gi and

Pi, from Ai and Bi are left out for brevity. Again, the carry-look ahead Adder demonstrates

modularity and regularity.

All of the CLA blocks compute the single-bit and block generate and propagate signals

simultaneously. The critical path starts with computing G0 and G3:0 in the first CLA block.

Cin then advances directly to Cout through the AND/OR gate in each block until the last.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 12

For a large Adder, this is much faster than waiting for the carries to ripple through each

consecutive bit of the Adder. Finally, the critical path through the last block contains a short

ripple-carry Adder. Thus, an N-bit Adder divided into k-bit blocks has a delay:

where tpg is the delay of the individual generate/propagate gates (a single AND or OR gate) to

generate Pi and Gi, tpg_block is the delay to find the generate/propagate signals Pi:j and Gi:j for a

k-bit block, and tAND_OR is the delay from Cin to Cout through the final AND/OR logic of the k-bit

CLA block. For N >16, the carry-look ahead Adder is generally much faster than the ripple-carry

Adder. However, the Adder delay still increases linearly with N.

Example 1: RIPPLE-CARRY ADDER AND CARRY-LOOKAHEAD ADDER DELAY

Compare the delays of a 32-bit ripple-carry Adder and a 32-bit carry-look ahead Adder with 4-

bit blocks. Assume that each two-input gate delay is 100 ps and that a full Adder delay is 300 ps.

Sol:

 The propagation delay of the 32-bit ripple carry Adder is 32 × 300 ps = 9.6 ns.

The CLA has tpg = 100 ps,

tpg_block = 6 × 100 ps = 600 ps, and

 tAND_OR = 2 × 100 ps =200 ps.

The propagation delay of the 32-bit carry-look ahead Adder with 4-bit blocks is :

100 ps+ 600 ps + (32/4 − 1) × 200 ps + (4 × 300 ps)

= 3.3 ns,

Almost three times faster than the ripple-carry Adder!

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 13

Prefix Adder

Early computers used ripple carry Adders, because components were expensive and ripple-carry

Adders used the least hardware. Virtually all modern PCs use Prefix Adders on critical paths,

because transistors are now cheap and speed is of great importance.

Prefix Adders extend the generate and propagate logic of the carry look ahead Adder to perform

addition even faster. They first compute G and P for pairs of columns, then for blocks of 4, then

for blocks of 8, then 16, and so forth until the generate signal for every column is known. The

sums are computed from these generate signals.

In other words, the strategy of a Prefix Adder is to compute the carry in Ci−1 for each column i as

quickly as possible, then to compute the sum, using

Define column i = −1 to hold Cin, so G−1 = Cin and P−1 = 0. Then Ci−1 =Gi−1:−1 because there will be

a carry out of column i−1 if the block spanning columns i−1 through −1 generates a carry. The

generated carry is either generated in column i−1 or generated in a previous column and

propagated.

Thus, we rewrite Equation as:

Hence, the main challenge is to rapidly compute all the block generate signals G−1:−1, G0:−1,

G1:−1, G2:−1, . . . , GN−2:−1. These signals, along with P−1:−1, P0:−1, P1:−1, P2:−1, . . . , PN−2:−1, are called

Prefixes.

The diagram shows an N= 16-bit Prefix Adder. The Adder begins with a pre-computation to

form Pi and Gi for each column from Ai and Bi using AND and OR gates.

It then uses log2N= 4 levels of black cells to form the Prefixes of Gi:j and Pi:j. A black cell takes

inputs from the upper part of a block spanning bits i:k and from the lower part spanning bits

k−1:j. It combines these parts to form generate and propagate signals for the entire block

spanning bits i: j using the equations:

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 14

A block spanning bits i:j will generate a carry if the upper part generates a carry or if the upper

part propagates a carry generated in the lower part. The block will propagate a carry if both the

upper and lower parts propagate the carry. Finally, the Prefix Adder computes the sums.

In summary, the Prefix Adder achieves a delay that grows logarithmically rather than linearly

with the number of columns in the Adder. This speedup is significant, especially for Adders with

32 or more bits, but it comes at the expense of more hardware than a simple carry-look ahead

Adder.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 15

The network of black cells is called a Prefix Tree. The general principle of using Prefix trees to

perform computations in time that grows logarithmically with the number of inputs is a powerful

technique.

The critical path for an N-bit Prefix Adder involves the pre-computation of Pi and Gi followed by

log2N stages of black Prefix cells to obtain all the Prefixes.

Gi-1:−1 then proceeds through the final XOR gate at the bottom to compute Si.

The delay of an N-bit Prefix Adder is:

where tpg_Prefix is the delay of a black Prefix cell.

Example-2 PREFIX ADDER DELAY

Compute the delay of a 32-bit Prefix Adder. Assume that each two-input gate delay is 100 ps.

Sol:

The propagation delay of each black Prefix cell tpg_Prefix is 200 ps (i.e., two gate delays).

Thus, the propagation delay of the 32-bit Prefix Adder is:

 100 ps + log2(32) × 200 ps + 100 ps = 1.2 ns,

which is about three times faster than the carry-look ahead Adder and eight times faster than the

ripple-carry Adder from Example 1.

In practice, the benefits are not quite this great, but Prefix Adders are still much faster than the

others.

Putting It All Together …

This section introduced the half Adder, full Adder, and three types of carry propagate Adders:

ripple-carry, carry-look ahead, and Prefix Adders. Faster Adders require more hardware and

therefore are more expensive and power-hungry. These trade-offs must be considered when

choosing an appropriate Adder for a design.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-1 Page 16

Subtraction

Adders can add positive and negative numbers using two’s complement number representation.

Subtraction is almost as easy: flip the sign of the second number, then add. Flipping the sign of a

two’s complement number is done by inverting the bits and adding 1.

To compute Y = A − B, first create the two’s complement of B:

Invert the bits of B to obtain B and add 1 to get −B = B + 1.

Add this quantity to A to get Y = A + B + 1 = A − B.

This sum can be performed with a single CPA by adding A + B with Cin = 1.

The symbol for a Subtractor and the underlying hardware for performing Y = A – B are shown.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 1

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 2

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 3

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 4

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 5

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 6

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 7

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 8

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 9

Division

Binary division can be performed using the following algorithm for N-bit unsigned numbers in

the range [0, 2
N−1]:

The partial remainder R is initialized to 0. The most significant bit of the dividend A then

becomes the least significant bit of R. The divisor B is repeatedly subtracted from this partial

remainder to determine whether it fits. If the difference D is negative (i.e., the sign bit of D is 1),

then the quotient bit Qi is 0 and the difference is discarded. Otherwise, Qi is 1, and the partial

remainder is updated to be the difference. In any event, the partial remainder is then doubled

(left-shifted by one column), the next most significant bit of A becomes the least significant bit

of R, and the process repeats. The result satisfies:

A schematic of a 4-bit Array Divider is shown in the figure. The divider computes A/B and

produces a quotient Q and a remainder R. The legend shows the symbol and schematic for each

block in the array divider. The signal N indicates whether R − B is negative. It is obtained from

the D output of the leftmost block in the row, which is the sign of the difference.

The delay of an N-bit array divider increases proportionally to N
2
 because the carry must ripple

through all N stages in a row before the sign is determined and the multiplexer selects R or D.

This repeats for all N rows. Division is a slow and expensive operation in hardware and therefore

should be used as infrequently as possible.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 10

Four-bit Array Divider bit

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 11

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 12

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 13

Special Cases: 0, ±∞, and NaN

The IEEE floating-point standard has special cases to represent numbers such as zero, infinity,

and illegal results. For example, representing the number zero is problematic in floating-point

notation because of the implicit leading one. Special codes with exponents of all 0’s or all l’s are

reserved for these special cases. Table shows the floating-point representations of 0, ±∞, and

NaN. As with sign/magnitude numbers, floating- point has both positive and negative 0. NaN is

used for numbers that don’t exist, such as

Single- and Double-Precision Formats

So far, we have examined 32-bit floating-point numbers. This format is also called single-

precision, single, or float. The IEEE 754 standard also defines 64-bit double-precision numbers

(also called doubles) that provide greater precision and greater range. Table shows the number of

bits used for the fields in each format.

Excluding the special cases mentioned earlier, normal single-precision numbers span a range of

±1.175494 × 10−
38

 to ±3.402824 × 10
38

.

They have a precision of about seven significant decimal digits (because 2−
24

 ≈ 10−
7
). Similarly,

normal double-precision numbers span a range of ±2.22507385850720 × 10−
308

 to

±1.79769313486232 × 10
308

 and have a precision of about 15 significant decimal digits.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 14

Rounding

Arithmetic results that fall outside of the available precision must round to a neighboring

number. The rounding modes are: round down, round up, round toward zero, and round to

nearest. The default rounding mode is round to nearest. In the round to nearest mode, if two

numbers are equally near, the one with a 0 in the least significant position of the fraction is

chosen.

Recall that a number overflows when its magnitude is too large to be represented. Likewise, a

number underflows when it is too tiny to be represented. In round to nearest mode, overflows are

rounded up to ±∞ and underflows are rounded down to 0.

Floating-Point Addition

Addition with floating-point numbers is not as simple as addition with two’s complement

numbers. The steps for adding floating-point numbers with the same sign are as follows:

1. Extract exponent and fraction bits.

2. Prepend leading 1 to form the mantissa.

3. Compare exponents.
4. Shift smaller mantissa if necessary.

5. Add mantissas.

6. Normalize mantissa and adjust exponent if necessary.
7. Round result.

8. Assemble exponent and fraction back into floating-point number.

Example shows the floating-point addition of 7.875 (1.11111 × 2
2
) and 0.1875 (1.1 × 2

−3
).

The result is 8.0625 (1.0000001 × 23).

After the fraction and exponent bits are extracted and the implicit leading 1 is prepended in steps

1 and 2, the exponents are compared by subtracting the smaller exponent from the larger

exponent. The result is the number of bits by which the smaller number is shifted to the right to

align the implied binary point (i.e., to make the exponents equal) in step 4. The aligned numbers

are added. Because the sum has a mantissa that is greater than or equal to 2.0, the result is

normalized by shifting it to the right one bit and incrementing the exponent. In this example, the

result is exact, so no rounding is necessary. The result is stored in floating-point notation by

removing the implicit leading one of the mantissa and prepending the sign bit.

EC206 C0MPUTER ORGANISATION MODULE I

Module I Module I Part-2 Page 15

Some interesting facts…

Floating-point cannot represent some numbers exactly, like 1.7. However, when you type 1.7

into your calculator, you see exactly 1.7, not 1.69999. . . . To handle this, some applications,

such as calculators and financial software, use binary coded decimal (BCD) numbers or formats

with a base 10 exponent. BCD numbers encode each decimal digit using four bits with a range of

0 to 9. For example, the BCD fixed-point notation of 1.7 with four integer bits and four fraction

bits would be 0001.0111. Of course, nothing is free. The cost is increased complexity in

arithmetic hardware and wasted encodings (A–F encodings are not used), and thus decreased

performance. So for computer-intensive applications, floating-point is much faster.

Floating-point arithmetic is usually done in hardware to make it fast. This hardware, called the

floating-point unit (FPU), is typically distinct from the central processing unit (CPU). The

infamous floating-point division (FDIV) bug in the Pentium FPU cost Intel $475 million to recall

and replace defective chips. The bug occurred simply because a lookup table was not loaded

correctly!

7/11/2021

1

Pseudoinstructions
Exceptions

Signed and unsigned instructions
Floating-point instructions

Module III (Cont…)

Based on true facts from:

David Money Harris, Sarah L Harris, Digital Design and Computer Architecture,
Morgan Kaufmann – Elsevier, 2009

Pseudo-instructions
• MIPS is a RISC, so instr size and h/w complexity

are minimized by keeping no: of instrs small.
• If an instr is not available in MIPS instr set, it is

due to the fact that the same operation can be
performed using one or more existing MIPS instrs.

• MIPS defines Pseudo-instructions that are not
actually part of instr set but are commonly used
by programmers and compilers.

• When converted to machine code, Pseudo-
instructions are translated into one or more MIPS
instrs.

7/11/2021

2

Pseudo-instructions
• For ex, load immediate pseudo-instruction

(li) loads a 32-bit constant using a combination of
lui and ori instructions.

• The multiply pseudo-instruction (mul) provides
a three-operand multiply, multiplying two registers
and putting the 32 least significant bits of the result
into a third register.

• The no operation pseudo-instruction (nop)
performs no operation.
– The PC is incremented by 4 upon its execution.
– No other registers or memory values are altered.
– The machine code for the nop instruction is
0x00000000.

Pseudo-instruction MIPS Instructions

li $s0, 0x1234AA77 lui $s0, 0x1234

ori $s0, 0xAA77

clear $t0 add $t0, $0, $0

move $s1, $s2 add $s2, $s1,$0

nop sll $0, $0, 0

7/11/2021

3

Pseudo-instructions
• Some pseudo-instructions require a temporary

register for intermediate calculations.
• For example, the pseudo-instruction
beq $t2, imm15:0, Loop
compares $t2 to a 16-bit immediate, imm15:0.

• Need a temp register to store the 16-bit
immediate.

• Assemblers use the assembler register, $at, for
such purposes.

• It uses $at to converting a pseudo-instruction
to real MIPS instructions.-

7/11/2021

4

Exceptions
• An Exception is an Unexpected, Unscheduled

Procedure Call that causes the Processor to Jump
to a new Address in Memory.

• Exceptions may be caused by h/w or s/w.
• For ex, processor may receive signal that user

pressed a key on keyboard.
• Processor stops what it is doing, determine which

key was pressed, save it for future reference, then
resume the program that was running.

• Such a h/w exception triggered by an Input/
Output (I/O) device such as a keyboard is called
an Interrupt.

Exceptions
• Alternatively, program may encounter an error

condition such as an undefined instruction.
• The program then jumps to code in operating

system (OS), which may choose to terminate
the offending program.

• S/w exceptions are sometimes called Traps.
• Other causes of exceptions incl div by 0,

attempts to read non-existent memory, h/w
malfunctions, debugger break-points, and
arithmetic overflow.

7/11/2021

5

Exception Handler
• Processor records Cause of an exception and value

of PC at time exception occurs.
• It then jumps to Exception handler procedure.
• Exception handler is code in OS that examines

cause of exception and responds appropriately (by
reading keyboard on a h/w interrupt).

• It then Returns to the program that was executing
before exception took place.

• In MIPS, Exception handler is always located at
0x80000180.

• When an exception occurs, processor always Jumps
to this instruction addr, regardless of cause.

Exception Handler
• The MIPS architecture uses a special-purpose register,

called Cause register, to record cause of exception.
• Different codes are used to record different exception

causes, as given in Table.
• The exception handler code reads Cause register to

determine how to handle exception.
• MIPS uses another special-purpose register called the

Exception Program Counter (EPC) to store the value of
the PC at the time an exception takes place.

• Processor returns to addr in EPC after handling
exception.

• This is analogous to using $ra to store old value of PC
during a jal instruction.

7/11/2021

6

Chapter 6 <11>

Exception Cause
Hardware Interrupt 0x00000000

System Call 0x00000020

Breakpoint / Divide by 0 0x00000024

Undefined Instruction 0x00000028

Arithmetic Overflow 0x00000030

Exception Causes

Exception Registers
• The EPC and Cause registers are not part of the

MIPS register file.
• The mfc0 (move from coprocessor 0) instruction

copies these and other special-purpose registers
into one of the general purpose registers.

• Coprocessor 0 is called the MIPS processor
control; it handles interrupts and processor
diagnostics.

• For ex, mfc0 $t0, Cause
copies the Cause register into $t0.

7/11/2021

7

Exception Registers
• The syscall and break instructions cause

traps to perform system calls or debugger
breakpoints.

• Exception handler uses EPC to look up instr
and determine nature of system call or
breakpoint by looking at fields of instr.

Exception processing
• In summary, Exception causes processor to

jump to Exception Handler.
• The Exception Handler saves Registers on

Stack, then uses mfc0 to look at Cause and
respond accordingly.

• When Handler is finished, it restores Registers
from Stack, copies return address from EPC to
$k0 using mfc0, and returns using
jr $k0

7/11/2021

8

Signed and Unsigned Instructions

• Addition and Subtraction

• Multiplication and Division

• Set less than

Addition and Subtraction
 • Addition and subtraction are performed identically

whether number is signed or unsigned.
• But, interpretation of the results is different.
• If two large signed numbers are added together, the

result may incorrectly produce the opposite sign.
• For ex, adding the following two huge positive

numbers gives a negative result:
0x7FFFFFFF+0x7FFFFFFF=0xFFFFFFFE=-2

• Similarly, adding two huge negative numbers gives a
positive result,

 0x80000001+0x80000001=0x00000002.
• This is called Arithmetic Overflow.
• MIPS processor takes an Exception on Arithmetic

Overflow.

7/11/2021

9

Addition and Subtraction
 • MIPS provides signed and unsigned versions of

Addition and Subtraction.
• Signed versions are add,addi,sub.
• Unsigned versions are addu,addiu,subu.
• The two versions are identical except that signed

versions trigger an Exception on Overflow,
whereas unsigned versions do not.

• Because C ignores Exceptions, C programs
technically use the unsigned versions of these
instructions.

Multiplication and Division
• Multiplication and division behave differently for signed

and unsigned numbers.
• For ex, as an unsigned number, 0xFFFFFFFF represents

a large number, but as a signed number it represents 1.
• Hence, 0xFFFFFFFF x 0xFFFFFFFF would equal
0xFFFFFFFE00000001 if the numbers were unsigned
but 0x0000000000000001 if the numbers were
signed.

• Therefore, multiplication and division come in both
signed and unsigned flavors.

• mult and div treat the operands as signed numbers.
• multu and divu treat the operands as unsigned

numbers.

7/11/2021

10

Set Less Than
• Set less than instructions can compare either two

registers (slt) or a register and an immediate (slti).
• Set less than also comes in signed (slt and slti)

and unsigned (sltu and sltiu) versions.
• In a signed comparison, 0x80000000 is less than any

other number, because it is the most negative 2’s
complement number.

• In an unsigned comparison, 0x80000000 is greater
than 0x7FFFFFFF but less than 0x80000001,
because all numbers are positive.

• Beware that sltiu sign-extends the immediate
before treating it as an unsigned number.

Loads
• Byte loads come in signed (lb) and unsigned

(lbu) versions.
• lb sign-extends the byte, and lbu zero-

extends the byte to fill the entire 32-bit
register.

• Similarly, MIPS provides signed and unsigned
half-word loads (lh and lhu), which load
two bytes into the lower half and sign- or
zero-extend the upper half of the word.

7/11/2021

11

Floating-Point Instructions
• The MIPS architecture defines floating-point

coprocessor, known as Coprocessor 1 alongside
the main processor.

• MIPS defines 32-bit floating-point registers, $f0–
$f31. How many?

• These 32 registers are separate from the ordinary
registers used so far.

• MIPS supports both single- and double-precision
IEEE floating point arithmetic.

• Double precision (64-bit) numbers are stored in
pairs of 32-bit registers, so only the 16 even-
numbered registers ($f0, $f2, $f4, . .
. , $f30) are used to specify double-precision
operations.

Chapter 6 <22>

Name Register Number Usage
$fv0 - $fv1 0, 2 return values

$ft0 - $ft3 4, 6, 8, 10 temporary variables

$fa0 - $fa1 12, 14 Function arguments

$ft4 - $ft8 16, 18 temporary variables

$fs0 - $fs5 20, 22, 24, 26, 28, 30 saved variables

Floating-Point Instructions

7/11/2021

12

Floating-Point Instructions
• Floating-point instructions all have an Opcode of
17(100012).

• They require both a funct field and a cop
(coprocessor) field to indicate the type of instruction.

• Hence, MIPS defines the F-type instruction format for
floating-point instructions, shown.

• Floating-point instructions come in both single- and
double-precision flavors.

• Cop=16 (100002) for single-precision instr or 17
(100012) for double precision instrs.

• Like R-type instrs, F-type instructions have two source
operands, fs and ft, and one destination, fd.

Chapter 6 <24>

op cop ft fs fd funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

F-Type

• Opcode = 17 (0100012)

• Single-precision:
– cop = 16 (0100002)

– add.s, sub.s, div.s, neg.s, abs.s, etc.

• Double-precision:
– cop = 17 (0100012)

– add.d, sub.d, div.d, neg.d, abs.d, etc.

• 3 register operands:
– fs, ft: source operands

– fd: destination operands

F-Type Instruction Format

7/11/2021

13

Floating-Point Instructions

• Instruction precision is indicated by .s and
.d in the mnemonic.

• Floating-point arithmetic instructions include:
• Addition (add.s, add.d)
• Subtraction (sub.sz, sub.d)
• Multiplication (mul.s, mul.d),
• Division (div.s, div.d)
• Negation (neg.s, neg.d)
• Absolute value (abs.s, abs.d).

Floating-point branches
• These have two parts:
• First, a compare instruction is used to set or clear the

floating-point condition flag (fpcond).
• Then, a conditional branch checks the value of the flag.
• The compare instructions include equality

(c.seq.s/c.seq.d), less than (c.lt.s/c.lt.d), and
less than or equal to (c.le.s/c.le.d).

• The conditional branch instructions are bc1f and bc1t
that branch if fpcond is FALSE or TRUE, respectively.

• Inequality, greater than or equal to, and greater than
comparisons are performed with seq, lt, and le,
followed by bc1f.

• Floating-point registers are loaded and stored from
memory using lwc1 and swc1.

• These instructions move 32 bits, so two instructions are
necessary to handle a double-precision number.

7/11/2021

14

Chapter 6 <27>

• Set/clear condition flag: fpcond
– Equality: c.seq.s, c.seq.d

– Less than: c.lt.s, c.lt.d

– Less than or equal: c.le.s, c.le.d

• Conditional branch
– bclf: branches if fpcond is FALSE

– bclt: branches if fpcond is TRUE

• Loads and stores
– lwc1: lwc1 $ft1, 42($s1)

– swc1: swc1 $fs2, 17($sp)

Floating-Point Branches

Home Work!

Implement the following Pseudo-instructions as
a set of MIPS Instructions:
 rotate left (rol)
 rotate right (ror)

7/11/2021

1

Translating and Starting a
Program

Module III Topic
Based on true facts from:

David Money Harris, Sarah L Harris, Digital Design and
Computer Architecture, Morgan Kaufmann – Elsevier, 2009

,

•Firstly…
•Some Pioneers of
Computer Organization
and Architecture…

•To Inspire you all…

7/11/2021

2

Chapter 6 <3>

• Wrote the first computer
program

• Her program calculated
the Bernoulli numbers on
Charles Babbage’s
Analytical Engine

• She was the daughter of
the poet Lord Byron

Ada Lovelace, 1815-1852

Chapter 6 <4>

• Graduated from Yale
University with a Ph.D. in
mathematics

• Developed first compiler
• Helped develop the COBOL

programming language
• Highly awarded naval

officer
• Received World War II

Victory Medal and National
Defense Service Medal,
among others

Grace Hopper, 1906-1992

7/11/2021

3

Chapter 5 <5>

• Invented DRAM in
1966 at IBM

• Others were skeptical
that the idea would
work

• By the mid-1970’s
DRAM in virtually all
computers

Robert Dennard, 1932 -

Chapter 5 <6>

• Developed memories and high
speed circuits at Toshiba, 1971-1994

• Invented Flash memory as an
unauthorized project pursued during
nights and weekends in the late
1970’s

• The process of erasing the memory
reminded him of the flash of a
camera

• Toshiba slow to commercialize the
idea; Intel was first to market in
1988

• Flash has grown into a $25 billion
per year market

Fujio Masuoka, 1944 -

7/11/2021

4

Chapter 6 <7>

• President of Stanford University
• Professor of Electrical Engineering

and Computer Science at Stanford
since 1977

• Co-invented the Reduced
Instruction Set Computer (RISC)
with David Patterson

• Developed the MIPS architecture at
Stanford in 1984 and cofounded
MIPS Computer Systems

• As of 2004, over 300 million MIPS
microprocessors have been sold

John Hennessy

Chapter 6 <8>

S e g m e n tA d d r e s s

0 x F F F F F F F C

0 x 8 0 0 0 0 0 0 0

0 x 7 F F F F F F C

0 x 1 0 0 1 0 0 0 0

0 x 1 0 0 0 F F F C

0 x 1 0 0 0 0 0 0 0

0 x 0 F F F F F F C

0 x 0 0 4 0 0 0 0 0

0 x 0 0 3 F F F F C

0 x 0 0 0 0 0 0 0 0

R e s e r v e d

S t a c k

H e a p

S t a t i c D a t a

T e x t

R e s e r v e d

D y n a m i c D a t a

MIPS Memory Map

7/11/2021

5

Steps for Translating
and Starting a Program

Steps…
• Steps required to translate a program from a high

level language into machine language and to start
executing that program are indicated .

• First, the high-level code is compiled into assembly
code.

• The assembly code is assembled into machine code
in an object file.

• The linker combines the machine code with object
code from libraries and other files to produce an
entire executable program.

• In practice, most compilers perform all three steps
of compiling, assembling, and linking.

• Finally, the loader loads the program into memory
and starts execution.

7/11/2021

6

Step 1: Compilation
• A compiler translates high-level code into

assembly language.
• Code Example 6.30 shows a simple hll program

with three global variables and two procedures,
along with the assembly code produced by a
typical compiler.

• The .data and .text keywords are
assembler directives that indicate where the text
and data segments begin.

• Labels are used for global variables f, g, and y.
• Their storage location will be determined by the

assembler.

7/11/2021

7

Chapter 6 <13>

int f, g, y; // global variables

int main(void)

{

 f = 2;

 g = 3;

 y = sum(f, g);

 return y;

}

int sum(int a, int b) {

 return (a + b);

}

Example Program: C Code

Chapter 6 <14>

int f, g, y; // global

int main(void)
{

 f = 2;
 g = 3;

 y = sum(f, g);
 return y;
}

int sum(int a, int b) {
 return (a + b);
}

.data

f:

g:

y:

.text

main:

 addi $sp, $sp, -4 # stack frame

 sw $ra, 0($sp) # store $ra

 addi $a0, $0, 2 # $a0 = 2

 sw $a0, f # f = 2

 addi $a1, $0, 3 # $a1 = 3

 sw $a1, g # g = 3

 jal sum # call sum

 sw $v0, y # y = sum()

 lw $ra, 0($sp) # restore $ra

 addi $sp, $sp, 4 # restore $sp

 jr $ra # return to OS

sum:

 add $v0, $a0, $a1 # $v0 = a + b

 jr $ra # return

Example Program: MIPS Assembly

7/11/2021

8

Step 2: Assembling
• The assembler turns assembly language code

into object file containing machine lang code.
• The assembler makes two passes thro’

assembly code.
• On first pass, assembler assigns instruction

addresses and finds all symbols, such as labels
and global variable names.

• The code after first assembler pass is shown.

Assembling the code

7/11/2021

9

Symbol Table
• Names and addresses of symbols are kept in a

symbol table as shown in Table 6.4 .
• The symbol addresses are filled in after first

pass, when addresses of labels are known.
• Global variables are assigned storage locations

in global data segment of memory, starting at
memory address 0x10000000.

Chapter 6 <18>

Symbol Address

Example Program: Symbol Table

7/11/2021

10

Chapter 6 <19>

Symbol Address

f 0x10000000

g 0x10000004

y 0x10000008

main 0x00400000

sum 0x0040002C

Example Program: Symbol Table

7/11/2021

11

Assembler-Second pass
• On second pass through the code, assembler

produces machine language code.
• Addresses for global variables and labels are

taken from symbol table.
• The machine language code and symbol table

are stored in object file.

Linker
• Linker combines all of object files into one

machine language file called executable.
• The linker relocates data and instructions in

object files so that they are not all on top of
each other.

• It uses information in symbol tables to adjust
addresses of global variables and of labels that
are relocated.

7/11/2021

12

Linking the code

Chapter 6 <24>

Executable file header Text Size Data Size

Text segment

Data segment

Address Instruction

Address Data

0x00400000

0x00400004

0x00400008

0x0040000C

0x00400010

0x00400014

0x00400018

0x0040001C

0x00400020

0x00400024

0x00400028

0x0040002C

0x00400030

addi $sp, $sp, -4

sw $ra, 0 ($sp)

addi $a0, $0, 2

sw $a0, 0x8000 ($gp)

addi $a1, $0, 3

sw $a1, 0x8004 ($gp)

jal 0x0040002C

sw $v0, 0x8008 ($gp)

lw $ra, 0 ($sp)

addi $sp, $sp, -4

jr $ra

add $v0, $a0, $a1

jr $ra

0x10000000

0x10000004

0x10000008

f

g

y

0xC (12 bytes)0x34 (52 bytes)

0x23BDFFFC

0xAFBF0000

0x20040002

0xAF848000

0x20050003

0xAF858004

0x0C10000B

0xAF828008

0x8FBF0000

0x23BD0004

0x03E00008

0x00851020

0x03E00008

Example Program: Executable

7/11/2021

13

Linking the code
 • It has three sections: executable file header,

text segment, and data segment.
• The executable file header reports text size

(code size) and data size (amount of globally
declared data).

• Both are given in units of bytes.
• The text segment gives instructions and

addresses where they are to be stored.

Linking
• Data segment gives addr of each global variable.
• Global variables are addressed wrt base addr

given by global pointer, $gp.
• For ex, first store instruction,
sw $a0, 0x8000($gp)
stores value 2 to global var f, which is located at
memory addr 0x10000000.

• Offset, 0x8000, is a 16-bit signed num that is sign-
extended and added to base address, $gp.

• So, $gp + 0x8000 = 0x10008000 +
0xFFFF8000 = 0x10000000, the memory
address of variable f.

7/11/2021

14

Step 4: Loading
• The OS loads a program by reading text segment

of executable file from a storage device (usually
the hard disk) into text segment of memory.

• The OS sets $gp to 0x10008000 (middle of
global data segment) and $sp to 0x7FFFFFFC
(top of dynamic data segment), then performs a
jal 0x00400000 to jump to beginning of
program.

• The diagram shows memory map at the
beginning of program execution.

Loading the code

7/11/2021

15

Chapter 6 <29>

y

g

f

0x03E00008

0x00851020

0x03E00008

0x23BD0004

0x8FBF0000

0xAF828008

0x0C10000B

0xAF858004

0x20050003

0xAF848000

0x20040002

0xAFBF0000

0x23BDFFFC

MemoryAddress

$sp = 0x7FFFFFFC0x7FFFFFFC

0x10010000

0x00400000

Stack

Heap

$gp = 0x10008000

PC = 0x00400000

0x10000000

Reserved

Reserved

Example Program: In Memory

13-03-2020

1

MIPS
MICROARCHITECTURE

EC206 CO MODULE IV

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

Based on true facts from:

David Money Harris, Sarah L Harris, Digital Design and Computer Architecture,
Morgan Kaufmann – Elsevier, 2009

13-03-2020

2

• To begin with…

• Some more Pioneers of
Computer Organisation!

3

4

John von Neumann
(December 28, 1903 –

February 8, 1957) was a

Hungarian-

American Mathematician,

Physicist,

Computer scientist,

and Polymath. He made

major contributions to a

number of fields,

including Mathematics,

Computing (Von
Neumann architecture,

linear programming, self-

replicating machines,

stochastic computing),

and statistics.

13-03-2020

3

5

David Patterson is the
Pardee Professor of Computer
Science, Emeritus at the
University of California at
Berkeley, which he joined after
graduating from UCLA in
1976. He championed Reduced
Instruction Set Computers
(RISC), Redundant Array of
Inexpensive Disks (RAID),
SPARC for SUN
Microsystems and Networks of
Workstations (NOW),each of
which helped lead to billion dollar
industries…

INTRODUCTION TO
MICROARCHITECTURE

• Microarchitecture, is the connection between
Logic and Architecture and is the specific
arrangement of Registers, ALUs, Finite State
Machines (FSMs), Memories, and other logic
building blocks needed to implement an
Architecture.

• A particular Architecture, such as MIPS, may have
many different Microarchitectures, each with
different trade-offs of Performance, Cost, and
Complexity.

• They all run the same programs, but their internal
designs vary widely.

6

13-03-2020

4

Architectural State and Instruction Set
• Computer architecture is defined by its

Instruction Set and Architectural State.
• The Architectural State for the MIPS Processor

consists of the Program Counter and the 32
Registers.

• Any MIPS Microarchitecture must contain all of
this State.

• Based on the current architectural state, the
Processor executes a particular instruction with a
particular set of data to produce a new
architectural state.

• Some microarchitectures contain additional non-
architectural state to either simplify the logic or
improve performance. 7

Architectural State and Instruction Set
• Consider only a subset of the MIPS instruction

set.
• R-type arithmetic/logic instructions: add,
sub, and, or, slt

• Memory instructions: lw, sw
• Branches: beq
• After building the microarchitectures with these

instructions, extend them to handle addi and
j.

• These particular instructions were chosen
because they are sufficient to write many
interesting programs.

8

13-03-2020

5

Design Process
• Divide the Microarchitectures into two interacting

parts:
• The Datapath and the Control.
• The Datapath operates on words of data.
• It contains structures such as memories, registers,

ALUs, and multiplexers.
• MIPS is a 32-bit architecture, so we will use a 32-bit

datapath.
• The Control unit receives the current instruction from

the datapath and tells the datapath how to execute
that instruction.

• Specifically, the Control unit produces multiplexer
select, register enable, and memory write signals to
control the operation of the datapath.

9

Design Process
• To start with hardware containing the state elements.
• These elements incl memories and architectural state

(the program counter and registers).
• Then, add blocks of combinational logic between state

elements to compute new state based on current state.
• The instruction is read from part of memory;
• load and store instructions then read or write data

from another part of memory.
• Hence, to partition the overall memory into two smaller

memories, one containing instructions and the other
containing data.

• The diagram shows a block diagram with four state
elements: the program counter, register file, and
instruction and data memories.

10

13-03-2020

6

Chapter 7 <11>

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPCPC'

CLK

32 32
32 32

32

32

32
32

32

32

5

5

5

MIPS State Elements

PLEASE DRAW !!

Design Process
• Program Counter is an ordinary 32-bit register.
• Its output, PC, points to the current instruction.
• Its input, PC’, indicates the address of the next instruction.
• The Instruction memory has a single read port.
• It takes a 32-bit instruction address input, A, and reads 32-bit

data (i.e., instruction) from that address onto read data output,
RD.

• The 32-element 32-bit Register file has 2 read ports and 1
write port.

• The read ports take 5-bit address inputs, A1 and A2, each
specifying one of 25 = 32-bit registers as source operands.

• They read the 32-bit register values onto read data outputs
RD1 and RD2, respectively.

• The write port takes a 5-bit address input, A3; a 32-bit write
data input, WD; a write enable input, WE3; and a clock.

• If write enable is 1, register file writes data into specified
register on rising edge of the clock. 12

13-03-2020

7

Design Process
• The data memory has a single read/write port.
• If write enable, WE, is 1, it writes data WD into

address A on rising edge of clock.
• If write enable is 0, it reads address A onto RD.
• The instruction memory, register file, and data memory

are all read combinationally.
• In other words, if address changes, new data appears

at RD after some propagation delay; no clock is
involved.

• They are written only on rising edge of clock.
• In this fashion, state of the system is changed only at

clock edge.
• The address, data, and write enable must setup

sometime before clock edge and must remain stable
until a hold time after clock edge.

13

MIPS Microarchitectures
• There are three microarchitectures for the MIPS

processor architecture: Single-cycle, Multi-cycle,
and Pipelined.

• They differ in the way that the state elements are
connected together and in the amount of non-
architectural state.

• Single-cycle Microarchitecture
– The single-cycle microarchitecture executes an entire

instruction in one cycle.
– It is easy to explain and has a simple control unit.
– Because it completes the operation in one cycle, it

does not require any non-architectural state.
– However, the cycle time is limited by the slowest

instruction.

14

13-03-2020

8

MIPS Microarchitectures
• Multi-cycle Microarchitecture

– The multi-cycle microarchitecture executes instructions in
a series of shorter cycles.

– Simpler instructions execute in fewer cycles than
complicated ones.

– Moreover, multi-cycle microarchitecture reduces hardware
cost by reusing expensive hardware blocks such as adders
and memories.

– For ex, the adder may be used on several different cycles
for several purposes while carrying out a single instruction.

– The multi-cycle microprocessor accomplishes this by
adding several non-architectural registers to hold
intermediate results.

– The multi-cycle processor executes only one instruction at
a time, but each instruction takes multiple clock cycles.

15

MIPS Microarchitectures
• Pipelined Microarchitecture

– The pipelined microarchitecture applies pipelining to the
single-cycle microarchitecture.

– It therefore can execute several instructions
simultaneously, improving the throughput significantly.

– Pipelining must add logic to handle dependencies
between simultaneously executing instructions.

– It also requires non-architectural pipeline registers.
– The added logic and registers are worthwhile;

• All commercial high-performance Processors use
Pipelining today.

• MIPS- Microprocessor without Interlocked Pipelining
Stages

• SPARC- Scalable Processor ARChitecture
• ARM – Advanced RISC Machine

16

13-03-2020

9

Test your understanding!

1.Compare and Contrast the types of MIPS
Microarchitectures.

2. Which Microarchitectures need Non-architectural
elements and Why?

3. State the main parts of the Microarchitecture and
provide their features.

4. Define Microarchitecture and clarify whether a
specific Architecture can support more than one
Microarchitecture.

5. Construct the State Elements with the aid of well
labelled diagrams and provide their operation.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

17

PERFORMANCE ANALYSIS
• The execution time of a program, measured in

seconds, is given by:

• No: of instructions for each program is
constant, independent of microarchitecture.

• No: of Cycles Per Instruction, often called CPI,
is the no: of clock cycles required to execute
an average instruction.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

18

13-03-2020

10

CPI (Cont…)
• It is the reciprocal of the throughput

(Instructions Per Cycle, or IPC).

• Different microarchitectures have different
CPIs.

• Assume an ideal memory system that does
not affect the CPI.

• Multi-cycle data path and control use the term
CPI(M), which indicates mean clock cycles per
instruction.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

19

Clock Period Tc
• The number of seconds per Cycle is the Clock

Period, Tc.

• The clock period is determined by critical path
through logic on processor.

• Different microarchitectures have different clock
periods.

• Logic and circuit designs also significantly affect
clock period.

• For ex , a carry-look ahead adder is faster than a
ripple-carry adder.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

20

13-03-2020

11

Challenge for the Microarchitect
• Choose the design that minimizes execution time

while satisfying constraints on cost and/or power
consumption.

• Microarchitectural decisions affect both CPI and
Tc and are influenced by logic and circuit designs,
so determining the best choice requires careful
analysis.

• There are many other factors that affect overall
computer performance.

• For ex , hard disk, memory, graphics system, and
network connection may be limiting factors that
make processor performance irrelevant.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

21

Test your understanding!

1. Identify the various quantities that can be
used for performance analysis and give their
definitions.

2. Define and quantify the following: PET, CPI,
IPC, CPI(M), CP.

3. Explain the challenges faced by the designer
of Microarchitecture.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

22

13-03-2020

12

SINGLE-CYCLE PROCESSOR
Design a MIPS microarchitecture that executes
instructions in a single cycle in following stages:
1. Construct Datapath by connecting State

Elements with combinational logic that can
execute various instructions.

2. Control signals determine which specific
instruction is carried out by datapath at any
given time.

3. Controller contains combinational logic that
generates appropriate control signals based on
current instruction.

4. Then do Performance Analysis.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

23

Single-Cycle Datapath
Develop single-cycle datapath, adding one piece at a time
to State Elements.
New connections are shown in black, while h/w that has
already been studied is shown in gray, with control signals
shown in blue.
Step-1:Fetch Instruction from memory

• Program Counter (PC) contains address of current

instruction to execute.
• First step is to read this instruction from Instruction

Memory.
• Program Counter (PC) is simply connected to address

i/p of Instruction Memory.
• Instruction Memory reads out, or Fetches, the 32-bit

instruction, labeled Instr.
P.RAJKUMAR Prof/ECE/NCERC

qraj2015@hotmail.com
24

13-03-2020

13

25

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPC
PC'

Instr

CLK

Step: 1: Fetch Instruction from memory

DRAW PLEASE!!

Step: 2: Read Source Operand from
Register File

 • The processor’s actions depend on specific
instruction that was fetched.

• First work out Datapath connections for lw
instruction.

• Generalize Datapath to handle other instructions.
• For a lw instruction, next step is to read source

register containing base address.
• This reg is in rs field of instruction,
Instr25:21.

• These bits of instruction are connected to
address i/p of one of Register File read ports, A1.

• Register file reads register value onto RD1.
P.RAJKUMAR Prof/ECE/NCERC

qraj2015@hotmail.com
26

13-03-2020

14

27

Instr

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

25:21

CLK

Step: 2: Read Source Operand from Register File

Step: 3: Sign Extend the Immediate
 • The lw instruction also requires an offset.

• The offset is stored in immediate field of
instruction, Instr15:0.

• The 16-bit immediate might be either positive or
negative, it must be sign-extended to 32 bits.

• The 32-bit sign-extended value is called SignImm.

• Sign Extension simply copies sign bit (msb) of a
short input into all of upper bits of longer output.

• SignImm15:0= Instr15:0 and SignImm31:16= Instr15.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

28

13-03-2020

15

29

SignImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

CLK

Step: 3: Sign Extend the Immediate

Step: 4: Compute the Memory
Address

 • Processor must add base address to offset to find
effective address (EA) to read from memory using ALU.

• ALU receives two operands, SrcA and SrcB.
• SrcA comes from register file, and SrcB comes from

sign-extended immediate.
• The ALU can perform many operations.
• The 3-bit ALUControl signal specifies the operation.
• The ALU generates a 32-bit ALUResult and a Zero flag,

that indicates whether ALUResult 0.
• For a lw instruction, the ALUControl signal should be

set to 010 to add the base address and offset.
• ALUResult is sent to the data memory as the address

for the load instruction.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

30

13-03-2020

16

31

SignImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB

ALUResult

SrcA Zero

CLK

ALUControl
2:0

A
L
U

010

Step: 4: Compute the Memory Address

• The data is read from data memory onto ReadData bus, then
written back to destn register in register file at end of cycle.

• Port 3 of register file is write port.

• Destn register for lw instruction is specified in rt field,
Instr20:16, which is connected to port 3 address input, A3, of
register file.

• The ReadData bus is connected to port 3 write data input,
WD3, of register file.

• A control signal called RegWrite is connected to port 3 write
enable input, WE3, and is asserted during a lw instruction so
that the data value is written into register file.

• The write takes place on rising edge of the clock at end of cycle.

32

Step: 5: Read data from memory and write it
 back to register file

13-03-2020

17

33

A1

A3

WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD

Instruction

Memory

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

Step: 5: Read data from memory and write it back
to register file

Step: 6: Determine Address of next
Instruction

 • While instruction is being executed, processor
must compute address of next instruction,
PC’.

• Because instructions are 32 bits= 4 Bytes,
next instruction is at PC+ 4.

• Another adder used to increment the PC by 4.

• The new address is written into program
counter on next rising edge of the clock.

• This completes the datapath for lw
instruction.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

34

13-03-2020

18

35

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

Step: 6: Determine Address of next Instruction

state

Datapath for the sw instruction
• sw instruction reads a base address from port 1

of register and sign-extends an immediate.
• ALU adds base address to immediate to find

effective memory address.
• All of these functions are already supported by

the datapath.
• The sw instruction also reads a second register

from register file and writes it to data memory.
• The register is specified in the rt field,
Instr20:16.

• These bits of the instruction are connected to the
second register file read port, A2.

36

13-03-2020

19

Datapath for the sw instruction
• The register value is read onto the RD2 port.

• It is connected to the write data port of the data
memory.

• The write enable port of the data memory, WE, is
controlled by MemWrite.

• For a sw instruction, MemWrite=1, to write the
data to memory; ALUControl=010, to add the
base address and offset;

• RegWrite=0, because nothing should be
written to the register file.

P.RAJKUMAR Prof/ECE/NCERC

qraj2015@hotmail.com
37

38

Write Data to Memory for sw Instruction

13-03-2020

20

Datapath for R-type instructions
• Extend datapath to handle R-type instructions
add, sub, and, or, slt.

• Instructions read two registers from the register file,
perform some ALU operation on them, and write the
result back to a third register file.

• They differ only in the specific ALU operation.
• Hence, they can all be handled with the same

hardware, using different ALUControl signals.
• Enhanced datapath handling R-type instructions.
• The register file reads two registers.
• The ALU performs an operation on these two registers.
• Add a multiplexer to choose SrcB from either the

register file RD2 port or SignImm.

39

Datapath for R-type instructions
• The MUX is controlled by a new signal, ALUSrc.
• ALUSrc is 0 for R-type instructions to choose SrcB

from the register file;
• it is 1 for lw and sw to choose SignImm.
• R-type instructions write the ALUResult to

register file.
• Add another MUX to choose between ReadData and
ALUResult.

• Call its output Result.
• This MUX is controlled by another new signal,
MemtoReg.

• MemtoReg is 0 for R-type instructions to choose
Result from the ALUResult;

• it is 1 for lw to choose ReadData.
40

13-03-2020

21

Datapath for R-type instructions
• For R-type instructions, the register is

specified by the rd field, Instr15:11.

• Add a third MUX to choose WriteReg from
the appropriate field of the instruction.

• The MUX is controlled by RegDst.

• RegDst is 1 for R-type instructions to
choose WriteReg from rd field,
Instr15:11;

• it is 0 for lw to choose rt field, Instr20:16.

41

42

Datapath enhancement for R-type Instructions

13-03-2020

22

Datapath for beq instruction
• Extend datapath to handle beq.
• beq compares two registers.
• If they are equal, it takes the branch by adding

branch offset to program counter.
• Offset is a positive or negative number, stored in

imm field of instruction, Instr31:26.
• The offset indicates the number of instructions to

branch past.
• Hence, immediate must be sign-extended and

multiplied by 4 to get new program counter
value:

• PC’ = PC+ 4 +SignImm x 4.

43

44

Datapath enhancement for beq Instruction

13-03-2020

23

Datapath for beq instruction
• The next PC value for a taken branch, PCBranch, is

computed by shifting SignImm left by 2 bits,
then adding it to PCPlus4.

• The left shift by 2 is an easy way to multiply by 4,
because a shift by a constant amount involves
just wires.

• The two registers are compared by computing
SrcA - SrcB using the ALU.

• If ALUResult is 0, as indicated by the Zero flag
from the ALU, the registers are equal.

• We add a MUX to choose PC from either
PCPlus4 or PCBranch.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

45

Datapath for beq instruction

• PCBranch is selected if the instruction is a
branch and the Zero flag is asserted.

• Hence, Branch is 1 for beq and 0 for other
instructions.

• For beq, ALUControl 110, so the ALU performs a
subtraction.

• ALUSrc 0 to choose SrcB from the register file.

• RegWrite and MemWrite are 0, because a branch
does not write to the register file or memory.

46

13-03-2020

24

Chapter 7 <47>

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

Single-Cycle Processor

Test your understanding!

1. Analyze the Data Path of the MIPS single cycle processor
for the lw instruction with the aid of neatly labelled
diagrams.

2. Construct the Data Path of the MIPS single cycle
processor for the sw instruction with the aid of neatly
labelled diagram.

3. Construct the Data Path of the MIPS single cycle
processor for the R-type instruction with the aid of
neatly labelled diagram.

4. Construct the Data Path of the MIPS single cycle
processor for the beq instruction with the aid of neatly
labelled diagram.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

48

13-03-2020

25

49

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite

 Single-Cycle Control

50

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

 Review of ALU…

13-03-2020

26

51

+

2 01

A B

C
out

Y
3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

 Review of ALU Internals…

52

ALUOp1:0 Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp1:0 Funct ALUControl2:0

00 X 010 (Add)

X1 X 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT)

 Control Unit- ALU Decoder

13-03-2020

27

Chapter 7 <53>

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000

lw 100011

sw 101011

beq 000100

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

Control Unit Main Decoder

Chapter 7 <54>

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 0 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

Control Unit: Main Decoder

13-03-2020

28

Test your understanding!

1. Construct the Control Unit of the MIPS Signle
Cycle Processor.

2. Apply the Control Unit Main Decoder for the,
lw, sw, R-type and beq instructions

of MIPS.

55

Performance Analysis
• Program Execution Time

 =(#instructions)x

(cycles/instruction)

x(seconds/cycle)

 = (# instructions) x CPI x TC

• TC limited by critical path (lw)

 P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

56

13-03-2020

29

Performance Analysis
• Each instruction in the single-cycle processor takes one clock

cycle, so the CPI is 1.
• Critical path for lw instruction starts with PC loading a new

address on rising edge of the clock.
• Instruction memory reads next instruction.
• The register file reads SrcA.
• While the register file is reading, the immediate field is sign-

extended and selected at the ALUSrc MUX to determine
SrcB.

• The ALU adds SrcA and SrcB to find the effective address.
• The data memory reads from this address.
• The MemtoReg MUX selects ReadData.
• Finally, Result must setup at the register file before the

next rising clock edge, so that it can be properly written.

57

Single Cycle Performance

• Hence, the cycle time is:

• Single-cycle critical path:
 Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + tmem +

tmux + tRFsetup

• Typically, limiting paths are:
Memory, ALU, Register file (accesses are slower…)

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

58

13-03-2020

30

Single-Cycle Performance Example

Build a single-cycle MIPS processor in a 65 nm
CMOS manufacturing process. The logic
elements have the delays given in Table.
Compute the execution time for a program with
100 billion instructions. Assume that CPI=1.

59

60

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Single-Cycle Performance Example

Tc = ?

13-03-2020

31

61

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

 Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

 = [30 + 2(250) + 150 + 25 + 200 + 20] ps

 = 925 ps

Single-Cycle Performance Example

Single-Cycle Performance Example
 Program with 100 billion instructions:

Execution Time = (# instructions) x CPI x TC

 = (100 × 109)(1)(925 × 10-12 s)

 = 92.5 seconds

62

13-03-2020

32

Test your understanding!

1. Analyse the Performance of the MIPS Single
Cycle Processor.

2. From first principles, estimate the PET of a
MIPS Single Cycle Processor, using the same
delay table as before, for a given program
with:

(i) 10 lakh instructions

(ii) 10 crore instructions

63

13-03-2020

1

Multi-Cycle Microarchitecture

Module IV (Cont…)

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

1

Problems with Single-cycle Processor
• The single-cycle processor has three primary

drawbacks.
–1. It requires a clock cycle long enough to support

slowest instruction (lw), even though most
instructions are faster.

– 2. It requires three adders (one in the ALU and two for
the PC logic), adders are relatively expensive circuits,
especially if they must be fast.

– 3. It has separate Instruction and Data Memories,
which may not be realistic.

• Most computers have a single large memory that
holds both instructions and data and that can be
read and written.

2

13-03-2020

2

Multi-cycle Processor

• Multicycle processor breaks an instruction into
multiple shorter steps.

• In each short step, the processor can read or write the
memory or register file or use the ALU.

• Different instructions use different numbers of steps,
so simpler instructions can complete faster than more
complex ones.

• The processor needs only one adder; this adder is
reused for different purposes on various steps.

• And the processor uses a combined memory for
instructions and data.

• The instruction is fetched from memory on the first
step, and data may be read or written on later steps.

3

Design of Multi-cycle Processor
• First, construct a Datapath by connecting the

architectural state elements and memories with
combinational logic.

• But, this time, also add non-architectural state
elements to hold intermediate results between the
steps.

• Then design the Controller.
• The controller produces different signals on different

steps during execution of a single instruction, so it is
now a finite state machine rather than combinational
logic.

• Examine how to add new instructions to the processor.
• Finally, analyze the performance of the multicycle

processor and compare it to the single-cycle processor.
4

13-03-2020

3

5

Replace Instruction and Data memories with a

single unified memory – more realistic

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

PCPC'

WD

WE

CLK

EN

Multi-cycle Datapath

Test your understanding!

1. Explain the drawbacks of single cycle micro-
architecture.

2. How does multi cycle micro-architecture
work?

3. Explain the design of multi cycle micro-
architecture with use of modified state
elements.

P.RAJKUMAR Prof/ECE/NCERC

qraj2015@hotmail.com
6

13-03-2020

4

7

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

PCPC' Instr

CLK

WD

WE

CLK

EN

IRWrite

Step-1: Fetch Instruction

Multi-cycle Datapath

8

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

PCPC' Instr
25:21

CLK

WD

WE

CLK CLK

A

EN

IRWrite

Step-2a: Read Source Operands from Reg File

Multi-cycle Datapath: lw Instruction

13-03-2020

5

9

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

PCPC' Instr
25:21

15:0

CLK

WD

WE

CLK CLK

A

EN

IRWrite

Step-2b: Sign Extend the Immediate

Multi-cycle Datapath: lw Instruction

10

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

PCPC' Instr
25:21

15:0

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK CLK

A CLK

EN

IRWrite

Step-3: Compute the Memory Address

Multi-cycle Datapath: lw Address

13-03-2020

6

11

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

PCPC' Instr
25:21

15:0

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

EN

IRWriteIorD

0

1

Step-4: Read Data from Memory

Multi-cycle Datapath: lw Memory Read

12

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

PCPC' Instr
25:21

15:0

SrcB
20:16

ALUResult

SrcA

ALUOut

RegWrite

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

EN

IRWriteIorD

0

1

Step-5: Write Data back to Register File

Multi-cycle Datapath: lw Write Register

13-03-2020

7

13

PCWrite

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1PCPC' Instr
25:21

15:0

SrcB

20:16

ALUResult

SrcA

ALUOut

ALUSrcARegWrite

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

00

01

10

11

4

CLK

ENEN

ALUSrcB
1:0

IRWriteIorD

0

1

Step-6: Increment PC

14

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB
20:16

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

00

01

10

11

4

CLK

ENEN

ALUSrcB
1:0

IRWriteIorDPCWrite

B

Multi-cycle Datapath: sw Instruction

Write Data in rt to Memory

13-03-2020

8

15

0

1

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

ALUResult

SrcA

ALUOut

RegDstMemWrite MemtoReg ALUSrcARegWrite

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

ALUSrcB
1:0

IRWriteIorDPCWrite

• Read from rs and rt

• Write ALUResult to register file

• Write to rd (instead of rt)

Multi-cycle Datapath: R-type Instruction

16

SignImm

b

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1 0

1

PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

ALUSrcB
1:0

IRWriteIorD PCWrite

PCEn

• rs == rt?  Check the condition

• BTA = (sign-extended immediate << 2) + (PC+4)

Multi-cycle Datapath: beq Instruction

13-03-2020

9

Test your understanding!

1. Analyze the Data Path of the MIPS multi cycle
processor for the lw instruction with the aid of
neatly labelled diagrams.

2. Construct the Data Path of the MIPS multi cycle
processor for the sw instruction with the aid of
neatly labelled diagram.

3. Construct the Data Path of the MIPS multi cycle
processor for the R-type instruction with the aid
of neatly labelled diagram.

4. Construct the Data Path of the MIPS multi cycle
processor for the beq instruction with the aid of
neatly labelled diagram.

 P.RAJKUMAR Prof/ECE/NCERC

qraj2015@hotmail.com
17

18

SignImm

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1 0

1

PC
0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
e

g
D

s
t

Branch

MemWrite

M
e
m

to
R

e
g

ALUSrcA

RegWrite
Op

Funct

Control

Unit

Zero

PCSrc

CLK

CLK

ALUControl
2:0

A
L
U

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

ALUSrcB
1:0IRWrite

IorD

PCWrite

PCEn

Multi-cycle Processor

13-03-2020

10

19

ALUSrcA

PCSrc

Branch

ALUSrcB
1:0

Opcode
5:0

Control

Unit

ALUControl
2:0

Funct
5:0

Main

Controller

(FSM)

ALUOp
1:0

ALU

Decoder

RegWrite

PCWrite

IorD

MemWrite

IRWrite

RegDst

MemtoReg

Register

Enables

Multiplexer

Selects

Multi-cycle Control

20

13-03-2020

11

21

22

13-03-2020

12

Test your understanding!

1. Construct the Control Unit of the MIPS Multi
Cycle Processor.

2. Apply the Control Unit Main Decoder for the,
lw, sw, R-type and beq instructions

of the MIPS Multi Cycle Processor.

23

Multi-cycle Microarchitecture
Performance Analysis

• The Execution Time of an instruction depends on both
the number of cycles it uses and the cycle time.

• Single-cycle processor performed all instructions in one
cycle, but Multi-cycle processor uses varying numbers
of cycles for various instructions.

• However, the multi-cycle processor does less work in a
single cycle and, so, has a shorter cycle time.

• The multicycle processor requires three cycles for beq
and j instructions, four cycles for sw, addi, and R-
type instructions, and five cycles for lw instructions.

• The CPI depends on the relative likelihood that each
instruction is used.

P.RAJKUMAR Prof/ECE/NCERC
qraj2015@hotmail.com

24

13-03-2020

13

Example: MULTI-CYCLE PROCESSOR
CPI(M)

The SPECINT2000 benchmark consists of approximately 25%
loads, 10% stores, 11% branches, 2% jumps, and 52% R-type
instructions. Determine the average CPI for this benchmark or
CPI(M).
Sol:
• The average CPI is the sum over each instruction of the CPI

for that instruction multiplied by the fraction of the time
that instruction is used.

• For this benchmark, Average CPI = (0.11+ 0.02)(3) + (0.52+
0.10)(4) + (0.25)(5) = 4.12.

• This is better than the worst-case CPI of 5, which would be
required if all instructions took the same time. (Single-Cycle)

• Therefore, CPI(M)= 4.12

25

Performance Analysis
• The design of the multicycle processor is such

that each cycle involved one ALU operation,
memory access, or register file access.

• Assume the register file is faster than the
memory and that writing memory is faster than
reading memory.

• The Cycle Time is given by:

• The numerical values of these times will depend
on the specific implementation technology.

 26

13-03-2020

14

Example PROCESSOR PERFORMANCE
COMPARISON

Is it better building the multicycle processor
instead of the single-cycle processor? For both
designs, a 65 nm CMOS manufacturing process
with the delays given in Table. Compare each
processor’s execution time for 100 billion
instructions from the SPECINT2000 benchmark.

27

Chapter 7 <28>

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

 Tc = ?

Multi-cycle Performance Example

13-03-2020

15

Chapter 7 <29>

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

 Tc = tpcq_PC + tmux + max(tALU + tmux, tmem) + tsetup

 = tpcq_PC + tmux + tmem + tsetup

 = [30 + 25 + 250 + 20] ps

 = 325 ps

Multi-cycle Performance Example

Chapter 7 <30>

Program with 100 billion instructions

Execution Time = ?

Program with 100 billion instructions

Execution Time = (# instructions) × CPI(M) × Tc

 = (100 × 109)(4.12)(325 × 10-12)

 = 133.9 seconds

This is slower than the single-cycle processor
(92.5 seconds). Why?

Multi-cycle Performance Example

13-03-2020

16

Comparison
• A multi-cycle processor avoids making all instructions

take as long as the slowest one.

• But, this example shows that the multicycle processor
is slower than the single-cycle processor .

• The fundamental problem is that even though the
slowest instruction, lw, was broken into five steps, the
multi-cycle processor cycle time was not nearly
improved fivefold.

• Not all of the steps are exactly the same length, and
also the 50-ps sequencing overhead of register clk-to-Q
and setup time must now be paid on every step, not
just once for entire instruction.

31

Comparison
• Compared with the single-cycle processor, the

multicycle processor is likely to be less
expensive because it eliminates two adders
and combines the instruction and data
memories into a single unit.

• It does, however, require five non-
architectural registers and additional
multiplexers.

32

13-03-2020

17

Test your understanding!

1. Analyse the Performance of the MIPS Multi Cycle
Processor.

2. Processor performance comparison using
SPECINT2000 benchmark with same table of
delays for :

(i) 10 lakh instructions
(ii) 10 crore instructions
3. Compare and Contrast the performance of Multi
Cycle processor with Single Cycle processor,
highlighting the pros and cons.

33

3/22/2020

1

INPUT/OUTPUT (I/O) System

Module V
Based on :

Carl Hamacher “Computer Organization”, MGH

Introduction to I/O
• Input to a Computer may come from Keyboard,

Mouse, a Touch panel, a Sensor switch, a Digital
camera, a Microphone, or a Fire alarm.

• Output may be to a Printer, Sound signal sent to a
Speaker, or a digitally coded command that
changes the speed of a Motor, opens a Valve, or
causes a Robot to move in a specified manner.

• Computers should have the ability to exchange
Digital and Analog information with a wide range
of devices in many different environments.

• Input/Output (I/O) capability of computers allows
for basic I/O operations.

3/22/2020

2

Accessing I/O Devices
• The components of a computer system

communicate with each other through an

Interconnection network.

• The Interconnection network consists of

circuits needed to transfer information

between the Processor, the Memory unit,

and a number of I/O devices.

The Interconnection Network

3/22/2020

3

Memory-Mapped I/O
• Each I/O device must appear to the Processor

as consisting of some addressable locations,
just like the Memory.

• Some addresses in the address space of the
Processor are assigned to these I/O locations,
rather than to the main Memory.

• These locations are usually implemented as
bit storage circuits (flip-flops) organized in the
form of Registers known as I/O Registers.

Memory-Mapped I/O
• Since the I/O devices and the Memory

share the same address space, this
arrangement is called Memory-Mapped
I/O.

• It is used in most Computers.

• With Memory-Mapped I/O, any machine
instruction that can access Memory can
be used to transfer data to or from an I/O
device.

3/22/2020

4

I/O Device Interface
• One Register may serve as a buffer for data

transfers

• Another may hold information about the current
status of the device,

• Another may store the information that controls
the operational behavior of the device.

• These data, status, and control Registers are
accessed by program instructions as if they were
Memory locations.

• Typical transfers of information are between I/O
Registers and the Registers in the Processor.

The Connections for Processor, Keyboard and Display

3/22/2020

5

Check your understanding!

1. State the various types of Input and Output
devices that need to be used in a modern
General purpose or Embedded Computer, and
provide details how I/O Capability is provided?

2. Explain how accessing I/O devices is made
possible in modern Computer, with the aid of a
generic sketch.

3. Explain the relevance of Memory Mapped I/O.
4. State the need for I/O Device Interface and

illustrate with the aid of a diagram the
connections between CPU and I/O devices.

Modes of Data Transfer

1. Programmed I/O

2. Interrupt driven I/O

3. Direct Memory Access (DMA)

Critical
matter!!

3/22/2020

6

Program-Controlled I/O

• Consider a task that reads characters typed on
a keyboard, stores these data in the Memory,
and displays the same characters on a display
screen.

• A simple way of implementing this task is to
write a program that performs all functions
needed to realize the desired action.

• This method is known as Program-Controlled
I/O.

Program-Controlled I/O

• It is necessary to ensure that the task happens
at the right time.

• An input character must be read in response
to a key being pressed.

• For output, a character must be sent to the
display only when the display device is able to
accept it.

• The rate of data transfer from the keyboard to
a computer is limited by the typing speed of
the user, which is unlikely to exceed a few
characters per second.

3/22/2020

7

Program-Controlled I/O

• The rate of output transfers from the computer to
the display is much higher.

• It is determined by the rate at which characters
can be transmitted to and displayed on the
display device, typically several thousand
characters per second.

• However, this is still much slower than the speed
of a Processor that can execute billions of
instructions per second.

• The difference in speed between the Processor
and I/O devices creates the need for mechanisms
to synchronize the transfer of data between
them.

Program-Controlled I/O

• Program-controlled I/O requires continuous
involvement of Processor in I/O activities.

• Almost all of the execution time is spent in
wait loops, while the Processor waits for a key
to be pressed or for the display to become
available.

• Wasting the Processor execution time in this
manner leads to poor efficiency.

• It can be avoided by using the concept of
Interrupts.

3/22/2020

8

Interrupts
• In P I/O , program enters a wait loop in which it

repeatedly tests device status.
• During this period, Processor is not performing

any useful computation.
• Other tasks can be performed while waiting for

an I/O device to become ready.
• Arrange for I/O device to alert the Processor

when it becomes ready.
• It can do so by sending a hardware signal called

an Interrupt Request to the Processor.
• Since the Processor is no longer required to

continuously poll the status of I/O devices, it can
use the waiting period to perform other useful
tasks.

• Interrupts allow wait periods to be eliminated.

Interrupt driven I/O
 • The program routine executed in response to an interrupt

request is called the Interrupt-Service Routine (ISR).
• Let an interrupt request arrives during execution of

instruction i.
• The Processor first completes execution of instruction i.
• Then, it loads PC with address of first instruction of ISR.
• After execution of the interrupt-service routine, the

Processor returns to instruction i + 1.
• When an interrupt occurs, current contents of PC, which

point to instruction i + 1, must be put in temporary
storage.

• A Return-from-interrupt instruction at the end of the
interrupt-service routine reloads the PC from that
temporary storage location, causing execution to resume
at instruction i + 1.

• The Return address must be saved on the Stack.

3/22/2020

9

Transfer of control through use of Interrupts

Interrupt driven I/O

• Processor must inform the device that its request
has been recognized so that it may remove its
Interrupt-Request signal.

• This is done by a special control signal, called
Interrupt Acknowledge, which is sent to device
thro’ the Interconnection network.

• An alternative is to have the transfer of data
between the Processor and the I/O device
interface accomplish the same purpose.

• The execution of an instruction in the Interrupt-
Service Routine (ISR) that accesses the status or
data Register in the device interface implicitly
informs the device that its Interrupt Request has
been recognized.

3/22/2020

10

Direct Memory Access
• Blocks of data are often transferred between

the main Memory and I/O devices such as
disks without program-controlled intervention
by the Processor.

• A special control unit is provided to manage
the transfer, without continuous intervention
by the Processor.

• This approach is called Direct Memory
Access, or DMA.

• The unit that controls DMA transfers is
referred to as a DMA Controller.

Direct Memory Access
• It may be part of the I/O device interface, or it

may be a separate unit shared by a number of I/O
devices.

• The DMA Controller performs the functions that
would normally be carried out by the Processor
when accessing the main Memory.

• For each word transferred, it provides the
Memory address and generates all the control
signals needed.

• It increments the Memory address for successive
words and keeps track of the number of transfers.

3/22/2020

11

DMA Operation

• Operation of DMA Controller must be under
the control of a Program executed by the
Processor, usually an OS routine.

• To initiate transfer of a block of words,
Processor sends to DMA Controller starting
address, number of words in the block, and
direction of the transfer.

• The DMA Controller then proceeds to
perform the requested operation.

• When the entire block has been transferred, it
informs the Processor by raising an Interrupt.

DMA Controller Registers
• Two Registers are used for storing the Starting

Address and the Word Count.
• The third Register contains Status and Control

Flags.
• The R/W bit determines the direction of the

transfer.
• When this bit is set to 1 by a program instruction,

Controller performs a Read operation, that is, it
transfers data from the Memory to the I/O
device.

• Otherwise, it performs a Write operation.
• Additional information is also transferred as may

be required by the I/O device.

3/22/2020

12

Typical Registers in DMA Controller

DMA
• When the Controller has completed

transferring a block of data and is ready to
receive another command, it sets the Done
flag to 1.

• Bit 30 is the Interrupt-enable flag, IE.

• When this flag is set to 1, it causes the
controller to raise an Interrupt after it has
completed transferring a block of data.

• Finally, the Controller sets the IRQ bit to 1
when it has requested an interrupt.

3/22/2020

13

Use of DMA controllers in Computer

DMA controllers in Computer
• One DMA controller connects a high-speed

Ethernet to the computer’s I/O bus (ex. PCI bus).

• The disk controller, which controls two disks, also
has DMA capability and provides two DMA
channels.

• It can perform two independent DMA operations,
as if each disk had its own DMA controller.

• The Registers needed to store the Memory
address, the word count, and so on, are
duplicated, so that one set can be used with each
disk.

3/22/2020

14

DMA Transfer
• To start a DMA transfer of a block of data from

the main Memory to one of the disks, an OS
routine writes the address and word count
information into the Registers of the disk
controller.

• The DMA controller proceeds independently
to implement the specified operation.

• When the transfer is completed, this fact is
recorded in the Status and Control Register of
the DMA channel by setting the Done bit.

DMA Transfer
• At the same time, if the IE bit is set, the

Controller sends an Interrupt Request to the
Processor and sets the IRQ bit.

• The Status Register may also be used to
record other information, such as whether the
transfer took place correctly or errors
occurred.

3/22/2020

15

Check your understanding!

1. State the modes of I/O Data Transfer.
2. Explain Programmed controlled I/O mechanism.
3. Explain Interrupt Driven I/O mechanism with the

aid of a diagram.
4. What is DMA? How does it use Interrupts?
5. Explain the DMA Controller Registers with the

aid of diagrams.
6. Describe the DMA transfer with the aid of

diagram and give details of the role of DMA
Controller.

Interface Circuits

• The I/O interface of a device consists of the
circuitry needed to connect that device to the
bus.

• On one side of the interface are the bus lines
for address, data, and control.

• On the other side are the connections needed
to transfer data between the interface and the
I/O device.

• This side is called a Port, and it can be either a
Parallel Port or a Serial Port.

3/22/2020

16

Interface Circuits

• A Parallel Port transfers multiple bits of data
simultaneously to or from the device.

• A Serial Port sends and receives data one bit
at a time.

• Communication with the Processor is the
same for both formats.

• The conversion from a Parallel to a Serial
format and vice versa takes place inside the
Interface circuit.

Functions of an I/O interface
1. Provides a Register for temporary storage of
data.
2. Includes a Status Register containing status info

that can be accessed by Processor.
3. Includes a Control Register that holds info

governing behavior of Interface.
4. Contains Address-decoding Circuitry to

determine when it is being addressed by
Processor.

5. Generates the required Timing signals.
6. Performs any Format conversion that may be

necessary to transfer data between Processor
and I/O device, such as parallel-to-serial
conversion, in the case of a serial port.

3/22/2020

17

Interconnection Standards
• A typical Desktop or Notebook Computer has

several Ports that can be used to connect I/O
devices, such as a Mouse, a Memory key, or a
Disk drive.

• Standard interfaces have been developed to
enable I/O devices to use interfaces that are
independent of any particular Processor.

• For ex, a pen drive can be used with any
computer that has a USB port.

• IEEE (Institute of Electrical and Electronics
Engineers) develops these standards further
and publishes them as IEEE Standards.

Universal Serial Bus (USB)
• Universal Serial Bus (USB) is the most

widely used interconnection standard.

• A large variety of devices are available with
a USB connector, including Mice, Memory
keys, Disk drives, Printers, Cameras, and
many more.

• The commercial success of the USB is due
to its simplicity and low cost.

3/22/2020

18

Universal Serial Bus (USB)
• The original USB specification supports two

speeds of operation, called low-speed (1.5
Megabits/s) and full-speed (12 Megabits/s).

• Later, USB 2, called High-Speed USB, was
introduced.

• It enables data transfers at speeds up to 480
Megabits/s.

• As I/O devices continued to evolve with even
higher speed requirements, USB 3 (called
Super-speed) was developed. It supports data
transfer rates up to 5 Gigabits/s.

Objectives of the USB

• Provide a simple, low-cost, and easy to use
interconnection system.

• Accommodate a wide range of I/O devices and
bit rates, including Internet connections, and
audio and video applications.

• Enhance user convenience through a “plug-
and-play” mode of operation.

3/22/2020

19

PCI Bus
• The PCI (Peripheral Component Interconnect)

bus was developed as a low-cost, Processor-
independent bus.

• It is on the motherboard of a computer and
used to connect I/O interfaces for a wide
variety of devices.

• A device connected to the PCI bus appears to
the Processor as if it is connected directly to
the Processor bus.

• Its interface Registers are assigned addresses
in the address space of the Processor.

Bus Structure
 • The PCI bus is connected to the Processor bus

via a controller called a Bridge.

• The Bridge has a special port for connecting
the computer’s Main Memory.

• It may also have another special high speed
port for connecting graphics devices.

• The Bridge translates and relays commands
and responses from one bus to the other and
transfers data between them.

3/22/2020

20

Use of a PCI bus in a Computer
System

Advantages and Benefits
• The PCI bus has gained great popularity,

particularly in the PC world.

• It is also used in many other computers, to
benefit from the wide range of I/O devices for
which a PCI interface is available.

• Both a 32-bit and a 64-bit configuration are
available, using either a 33-MHz or 66-MHz clock.

• A high-performance variant known as PCI-X is
also available.

• It is a 64-bit bus that runs at 133 MHz.

• Yet higher performance versions of PCI-X run at
speeds up to 533 MHz.

3/22/2020

21

SCSI Bus
• The acronym SCSI stands for Small Computer System

Interface .

• It refers to a standard bus defined by the American
National Standards Institute (ANSI).

• The SCSI bus may be used to connect a variety of
devices to a computer.

• It is particularly well-suited for use with disk drives.

• It is often found in installations such as institutional
databases or email systems where many disks drives
are used.

• In the original specifications of the SCSI standard,
devices are connected to a computer via a 50-wire
cable, which can be up to 25 meters in length and can
transfer data at rates of up to 5 Megabytes/s.

scuzzi

SCSI Bus
• The standard has undergone many revisions, and

its data transfer capability has increased rapidly.
• SCSI-2 and SCSI-3 have been defined, and each

has several options.
• Data are transferred either 8 bits or 16 bits in

parallel, using clock speeds of up to 80 MHz.
• There are also several options for the electrical

signaling scheme used.
• The bus may use single-ended transmission,

where each signal uses one wire, with a common
ground return for all signals.

• In another option, differential signaling is used,
with a pair of wires for each signal.

3/22/2020

22

Data Transfer over SCSI bus
 • Devices connected to SCSI bus are not part of

address space of Processor in the same way as
devices connected to the Processor bus or to the
PCI bus.

• A SCSI bus may be connected directly to
Processor bus, or more likely to another standard
I/O bus such as PCI, through a SCSI controller.

• Data and commands are transferred in the form
of multi-byte messages called packets.

• To send commands or data to a device, Processor
assembles the info in Memory then instructs SCSI
controller to transfer it to the device.

• Similarly, when data are read from a device, SCSI
controller transfers the data to Memory and then
informs Processor by raising an Interrupt.

Example: Read operation.
• Assume that the Processor wishes to read a block of data

from a disk drive and that these data are stored in two disk
sectors that are not contiguous.

• The Processor sends a command to the SCSI controller,
which causes the following sequence of events to take
place: 

1. The SCSI controller contends for control of the SCSI bus.
2. When it wins the arbitration process, the SCSI controller

sends a command to the disk controller, specifying the
required Read operation.

3. The disk controller cannot start to transfer data
immediately. It must first move the read head of the disk
to the required sector. Hence, it sends a message to the
SCSI controller indicating that it will temporarily suspend
the connection between them. The SCSI bus is now free to
be used by other devices.

3/22/2020

23

Example: Read operation (Cont…)

4. The disk controller sends a command to the disk drive
to move the read head to the first sector involved in
the requested Read operation. It reads the data stored
in that sector and stores them in a data buffer. When it
is ready to begin transferring data, it requests control
of the bus. After it wins arbitration, it re-establishes
the connection with the SCSI controller, sends the
contents of the data buffer, then suspends the
connection again.

5. The process is repeated to read and transfer the
contents of the second disk sector.

6. The SCSI controller transfers the requested data to the
main Memory and sends an interrupt to the Processor
indicating that the data are now available.

Check your understanding!

1. What is a Port and what are the types? Explain.
2. Explain functions of I/O Interface.
3. What is the need for a standard for I/O device

connections?
4. Describe the objectives of USB and provide technical

details of the standard.
5. Describe PCI Bus with the aid of diagram and give its

advantages and benefits.
6. Investigate the SCSI Bus and how its serves the

purpose of efficient data transfer, with details of a
typical read operation.

22-03-2020

1

Memory System

Module V Part-B

d Pyramid

22-03-2020

2

Memory Hierarchy
• Computer Memory comprise of Primary Memory

and Secondary Memory with different types.

• All the different types of Memory units are
employed effectively in a Computer System.

• The entire Computer Memory can be viewed as
the Memory Hierarchy.

• The fastest access is to data held in Processor
Registers (Level L0).

• So the Processor Registers are at the top of
Hierarchy in terms of speed of access.

• But, the Registers provide only a very small
portion of the required Memory.

Memory Hierarchy
• At the next level of Hierarchy is a relatively small amount

of Memory directly on Processor chip.
• This Memory, called a Processor Cache, holds copies of

instructions and data stored in a much larger Memory
that is provided externally.

• There are often two or more levels of Cache.
• A Primary Cache is always located on Processor chip.
• This Cache is small and its access time is comparable to

that of Processor Registers.
• The primary Cache is referred to as the Level 1 (L1) Cache.
• A larger, and hence somewhat slower, Secondary Cache is

placed between the Primary Cache and the rest of the
Memory.

• It is referred to as the Level 2 (L2) Cache.
• Often, the L2 Cache is not on the Processor chip.

22-03-2020

3

Memory Hierarchy

• The next level in the Hierarchy is the Main
Memory.

• This is a large Memory implemented using
Dynamic Memory components, typically
assembled in Memory modules such as SIMMs
and DIMMs (Dual In-line Memory Module).

• The Main Memory is much larger but significantly
slower than Cache memories.

• In a Computer with a Processor clock of 2 GHz or
higher, access time for Main Memory can be as
much as 100 times longer than access time for
the L1 Cache.

Memory Hierarchy
• Disk devices and Tape devices and optical storage

provide a very large amount of inexpensive Memory,
and they are widely used as local Secondary Storage in
computer systems. (Level-L5)

• They are very slow compared to the Main Memory.

• Remote Secondary Storage include Distributed File
Systems and Web Servers. (Level-L5)

• They represent the bottom level in the Memory
Hierarchy.

• Cost per bit of storage is the least at the bottom and
very high at the top!

• Mostly Electromechanical devices and effectively
provide an “Ocean” of storage that project the small
“Pool” of top most layer!!

22-03-2020

4

Characteristics of Memory
• An ideal Memory would be fast, large, and

inexpensive.
• A very fast Memory can be implemented using Static

RAM chips.
• But, these chips are not suitable for implementing

large memories, because their basic cells are larger
and consume more power than Dynamic RAM cells.

• Although Dynamic Memory units with Gigabyte
capacities can be implemented at a reasonable cost,
the affordable size is still small compared to the
demands of large programs with voluminous data.

• A solution is provided by using Secondary Storage,
mainly Magnetic disks, to provide the required
Memory space.

Characteristics of Memory (Cont…)
• Disks are available at a reasonable cost, and they are used

extensively in computer systems.
• However, they are much slower than semiconductor

Memory units.
• A very large amount of cost-effective storage can be

provided by magnetic disks, and a large and considerably
faster, yet affordable, main Memory can be built with
dynamic RAM technology.

• This leaves the more expensive and much faster Static RAM
technology to be used in smaller units where speed is of
the essence, such as in Cache Memories.

• During program execution, the speed of Memory access is
of utmost importance.

• The key to managing the operation of the Hierarchical
Memory system is to bring the instructions and data that
are about to be used as close to the processor as possible.

• This is the main purpose of using Cache Memories.

22-03-2020

5

Semiconductor RAM Memories

• Semiconductor Random-Access Memories
(RAMs) are available in a wide range of
speeds.

• Their cycle times range from 100 ns to less
than 10 ns.

Static Memories
• Memories that consist of circuits capable of retaining

their state as long as power is applied are known as
Static Memories.

• Static RAM (SRAM) cell may be implemented as two
inverters cross-connected to form a latch.

• The latch is connected to two bit lines by transistors T1
and T2.

• These transistors act as switches that can be opened or
closed under control of the word line.

• When the word line is at ground level, the transistors
are turned off and the latch retains its state.

• For example, if the logic value at point X is 1 and at
point Y is 0, this state is maintained as long as the
signal on the word line is at ground level.

• Assume that this state represents the value 1.

22-03-2020

6

Static RAM Cell

Static RAM Cell using CMOS Transistors

22-03-2020

7

Static RAM Cell using CMOS Transistors
 • Continuous power is needed for cell to retain its state.
• If power is cut off, cell’s contents are lost.
• On power ON, latch settles into a new stable state.
• Hence, SRAMs are said to be volatile memories

because their contents are lost when power is cut.
• A major advantage of CMOS SRAMs is their very low

power consumption, because current flows in the cell
only when the cell is being accessed.

• Otherwise, T1, T2, and one transistor in each inverter
are turned off, ensuring that there is no continuous
electrical path between Vsupply and ground.

• Static RAMs can be accessed very quickly.
• Access times on the order of a few nanoseconds are

found in commercially available chips.
• SRAMs are used in applications where speed is of

critical concern.

Dynamic RAM
• Static RAMs are fast, but their cells require several

transistors.
• Less expensive and higher density RAMs can be

implemented with simpler cells.
• But, these simpler cells do not retain their state for a long

period, unless they are accessed frequently for Read or
Write operations.

• Memories that use such cells are called dynamic RAMs
(DRAMs).

• Information is stored in a dynamic Memory cell in the form
of a charge on a capacitor, but this charge can be
maintained for only tens of milliseconds.

• Since the cell is required to store information for a much
longer time, its contents must be periodically refreshed by
restoring the capacitor charge to its full value.

• This occurs when the contents of the cell are read or when
new information is written into it.

22-03-2020

8

Dynamic RAM Cell

Dynamic RAM
• An example of a dynamic Memory cell consists of

a capacitor, C, and a transistor, T.
• To store information in this cell, transistor T is

turned on and an appropriate voltage is applied
to the bit line.

• This causes a known amount of charge to be
stored in the capacitor.

• After the transistor is turned off, the charge
remains stored in the capacitor, but not for long.

• The capacitor begins to discharge.
• This is because the transistor continues to

conduct a tiny amount of current, measured in
pA, after it is turned off.

22-03-2020

9

Dynamic RAM
• Hence, the information stored in the cell can be

retrieved correctly only if it is read before the charge
in the capacitor drops below some threshold value.

• During a Read operation, the transistor in a selected
cell is turned on.

• A sense amplifier connected to the bit line detects
whether the charge stored in the capacitor is above
or below the threshold value.

• If the charge is above the threshold, the sense
amplifier drives the bit line to the full voltage
representing the logic value 1.

Dynamic RAM
• As a result, the capacitor is recharged to the full

charge corresponding to the logic value 1.

• If the sense amplifier detects that the charge in
the capacitor is below the threshold value, it pulls
the bit line to ground level to discharge the
capacitor fully.

• Thus, reading the contents of a cell automatically
refreshes its contents.

• Since the word line is common to all cells in a
row, all cells in a selected row are read and
refreshed at the same time.

22-03-2020

10

Internal organization of a 32M × 8 dynamic Memory chip.

32M × 8 Dynamic Memory chip
• A 256-Megabit DRAM chip, configured as 32M × 8, is shown.
• The cells are organized in the form of a 16K × 16K array.
• The 16,384 cells in each row are divided into 2,048 groups of 8,

forming 2,048 bytes of data.
• Therefore, 14 address bits are needed to select a row, and another

11 bits are needed to specify a group of 8 bits in the selected row.
• In total, a 25-bit address is needed to access a byte in this Memory.
• The high-order 14 bits and the low-order 11 bits of the address

constitute the row and column addresses of a byte, respectively.
• To reduce the number of pins needed for external connections, the

row and column addresses are multiplexed on 14 pins.
• During a Read or a Write operation, the row address is applied first.
• It is loaded into the row address latch in response to a signal pulse

on an input control line called the Row Address Strobe (RAS).
• This causes a Read operation to be initiated, in which all cells in the

selected row are read and refreshed.

22-03-2020

11

32M × 8 Dynamic Memory chip
• Shortly after the row address is loaded, the column address is

applied to the address pins and loaded into the column address
latch under control of a second control line called the Column
Address Strobe (CAS).

• The information in this latch is decoded and the appropriategroup
of 8 Sense/Write circuits is selected.

• If the R/W control signal indicates a Read operation, the output
values of the selected circuits are transferred to the data lines,
D7−0.

• For a Write operation, the information on theD7−0 lines is
transferred to the selected circuits, then used to overwrite the
contents of the selected cells in the corresponding 8 columns.

• Note that in commercial DRAM chips, the RAS and CAS control
signals are active when low.

• Hence, addresses are latched when these signals change from high
to low.

• The signals are shown in diagrams as RAS and CAS to indicate this
fact.

Asynchronous DRAMs

• The timing of the operation of the DRAM
described above is controlled by the RAS and CAS
signals.

• These signals are generated by a Memory
controller circuit external to the chip when the
processor issues a Read or aWrite command.

• During a Read operation, the output data are
transferred to the processor after a delay
equivalent to the Memory’s access time.

• Such memories are referred to as Asynchronous
DRAMs.

22-03-2020

12

Synchronous DRAMs
• In the early 1990s, developments in Memory

technology resulted in DRAMs whose operation is
synchronized with a clock signal.

• Such memories are known as synchronous DRAMs
(SDRAMs).

• The cell array is the same as in asynchronous DRAMs.
• The distinguishing feature of an SDRAM is the use of a

clock signal, the availability of which makes it possible
to incorporate control circuitry on the chip that
provides many useful features.

• For example, SDRAMs have built-in refresh circuitry,
with a refresh counter to provide the addresses of the
rows to be selected for refreshing.

• As a result, the dynamic nature of these Memory chips
is almost invisible to the user.

Synchronous DRAMs
• Synchronous DRAM scan deliver data at a very high

rate, because all the control signals needed are
generated inside the chip.

• The initial commercial SDRAMs in the 1990s were
designed for clock speeds of up to 133 MHz.

• As technology evolved, much faster SDRAM chips were
developed.

• Today’s SDRAMs operate with clock speeds that can
exceed 1 GHz.

• Chips are manufactured in different organizations, to
provide flexibility in designing Memory systems.

• For example, a 1-Gbit chip may be organized as 256M ×
4, or 128M × 8.

22-03-2020

13

SIMMs and DIMMs
• Packaging considerations have led to the development of

assemblies known as Memory modules.
• Each such module houses many Memory chips, typically in

the range 16 to 32, on a small board that plugs into a socket
on the computer’s motherboard.

• Memory modules are commonly called SIMMs (Single In-
line Memory Modules) or DIMMs (Dual In-line Memory
Modules), depending on the configuration of the pins.

• Modules of different sizes are designed to use the same
socket.

• For example, 128M × 64, 256M × 64, and 512M × 64 bit
DIMMs all use the same 240-pin socket.

• Thus, total Memory capacity is easily expanded by
replacing a smaller module with a larger one, using the
same socket.

Check your understanding!

1. Investigate Memory Hierarchy with the aid of a
diagram and provide details of the different layers.

2. Explain the characteristics of Memory.
3. Describe Static Memories with the aid of diagrams.
4. Describe Dynamic RAM with the aid of a diagram.
5. Provide the internal organization of a Dynamic

Memory Chip with a diagram.
6. Compare and Contrast Asynchronous and

Synchronous DRAMs.
7. Explain the relevance of SIMMs and DIMMs in

modern Computer Systems.

22-03-2020

14

Read-only Memories
• Both Static and dynamic RAM chips are Volatile Memory,

which means that they retain information only while power
is turned on.

• There are many applications requiring Memory devices that
retain the stored information when power is turned off.

• So there is need to store a small program in such a
Memory, to be used to start the bootstrap process of
loading the operating system from a hard disk into the main
Memory.

• Many embedded applications do not use a hard disk and
require Nonvolatile Memories to store their software.

• Generally, their contents can be read in the same way as for
volatile Memories.

• But, a special writing process is needed to place the
information into a Nonvolatile Memory.

• Since its normal operation involves only reading the stored
data, a Memory of this type is called a Read-only Memory
(ROM).

A ROM Cell

22-03-2020

15

Read- Only Memory (ROM)
• Information can be written into it only once at the time of

manufacture.
• A logic value 0 is stored in the cell if the transistor is

connected to ground at point P; otherwise, a 1 is stored.
• The bit line is connected thro’ a resistor to power supply.
• To read state of cell, word line is activated to close the

transistor switch.
• As a result, the voltage on the bit line drops to near zero, if

there is a connection between the transistor and ground.
• If there is no connection to ground, the bit line remains at

the high voltage level, indicating a 1.
• A sense circuit at the end of the bit line generates the

proper output value.
• The state of the connection to ground in each cell is

determined when the chip is manufactured, using a mask
with a pattern that represents the information to be stored.

PROM
• Some ROM designs allow the data to be loaded by the

user, thus providing a programmable ROM (PROM).
• Programmability is achieved by inserting a fuse at point

P.
• Before it is programmed, the memory contains all 0s.
• The user can insert 1s at the required locations by

burning out the fuses at these locations using high-
current pulses.

• This process is irreversible.
• PROMs provide flexibility and convenience not

available with ROMs.
• The cost of preparing the masks needed for storing a

particular information pattern makes ROMs cost
effective only in large volumes.

• Memory chips can be programmed directly by the user.

22-03-2020

16

EPROM
• It allows the stored data to be erased and new data

to be written into it.

• Such an Erasable, Reprogrammable ROM is usually
called an EPROM.

• It provides considerable flexibility during
development phase of digital systems.

• Since EPROMs are capable of retaining stored
information for a long time, they can be used in place
of ROMs or PROMs while software is being
developed.

• An EPROM cell has a structure similar to the ROM
cell.

EPROM
• However, the connection to ground at point P is

made through a special transistor.
• The transistor is normally turned off, creating an

open switch.
• It can be turned on by injecting charge into it that

becomes trapped inside.
• Thus, an EPROM cell can be used to construct a

memory in the same way as the ROM cell.
• Erasure requires dissipating the charge trapped in

the transistors that form the memory cells.
• This can be done by exposing the chip to ultraviolet

light, which erases the entire contents of the chip.
• To make this possible, EPROM chips are mounted in

packages that have transparent windows.

22-03-2020

17

EEPROM
• An EPROM must be physically removed from the circuit for

reprogramming.

• Also, the stored information cannot be erased selectively.

• The entire contents of the chip are erased when exposed to
ultraviolet light.

• Another type of erasable PROM can be programmed, erased, and
reprogrammed electrically.

• Such a chip is called an Electrically Erasable PROM, or EEPROM.

• It does not have to be removed for erasure.

• Moreover, it is possible to erase the cell contents selectively.

• One disadvantage of EEPROMs is that different voltages are
needed for erasing, writing, and reading the stored data, which
increases circuit complexity.

• They have replaced EPROMs in practice due to their advantages.

Flash
• An approach similar to EEPROM technology has given

rise to flash memory devices.

• A flash cell is based on a single transistor controlled by
trapped charge, much like an EEPROM cell.

• Also like an EEPROM, it is possible to read the contents
of a single cell.

• The key difference is that, in a flash device, it is only
possible to write an entire block of cells.

• Prior to writing, the previous contents of the block are
erased.

• Flash devices have greater density, which leads to
higher capacity and a lower cost per bit.

• They require a single power supply voltage, and
consume less power in their operation.

22-03-2020

18

Flash
• The low power consumption of flash memories

makes them attractive for use in portable,
battery-powered equipment.

• Typical applications include hand-held
computers, cell phones, digital cameras, and MP3
music players.

• In hand-held computers and cell phones, a flash
memory holds the software needed to operate
the equipment, thus obviating the need for a disk
drive.

• A flash memory is used in digital cameras to store
picture data.

• In MP3 players, flash memories store the data
that represent sound.

Flash Cards
 • One way of constructing a larger module is to mount

flash chips on a small card.

• Such flash cards have a standard interface that makes
them usable in a variety of products.

• A card is simply plugged into a conveniently accessible
slot.

• Flash cards with a USB interface are widely used and
are commonly known as memory keys.

• They come in a variety of memory sizes.

• Larger cards may hold as much as 32 GBytes.

• A minute of music can be stored in about 1 MByte of
memory, using the MP3 encoding format.

• Hence, a 32-GByte flash card can store approximately
500 hours of music.

22-03-2020

19

Flash Drives
 • Larger flash memory modules have been

developed to replace hard disk drives, and
hence are called flash drives.

• They are designed to fully emulate hard disks,
to the point that they can be fitted into
standard disk drive bays.

• However, the storage capacity of flash drives is
significantly lower.

• Currently, the capacity of flash drives is on the
order of 64 to 128 GBytes.

Flash Drives
 • In contrast, hard disks have capacities exceeding a

Terabyte.

• Also, disk drives have a very low cost per bit.

• The fact that flash drives are solid state electronic
devices with no moving parts provides important
advantages over disk drives.

• They have shorter access times, which result in a
faster response.

• They are insensitive to vibration and they have
lower power consumption, which makes them
attractive for portable, battery-driven
applications.

22-03-2020

20

Check your understanding!

1. Compare and Contrast RAM and ROM by
providing their inherent characteristics and
differences.

2. With the aid of a diagram, explain the ROM
Cell.

3. Explain PROM, EPROM and EEPROM.

4. Describe Flash memory and Flash Cards.

5. Compare and Contrast Flash Drives and Hard
Disk Drives.

23-03-2020

1

Cache Memory
AND

Virtual Memory

MODULE VI

EC206 CO

23-03-2020

2

23-03-2020

3

23-03-2020

4

Locality of Reference
• Property of well written Computer Programs.
• Analysis of Programs shows that most of their

execution time is spent in routines in which many
instructions are executed repeatedly.

• These instructions may constitute a simple loop,
nested loops, or a few procedures that repeatedly call
each other.

• Many instructions in localized areas of Program are
executed repeatedly during some time period.

• This behavior manifests itself in two ways:
• Temporal and Spatial.
• Temporal means that a recently executed instruction is

likely to be executed again very soon.
• The Spatial aspect means that instructions close to a

recently executed instruction are also likely to be
executed soon.

Cache Memories
• Cache is a small and very fast Memory, placed

between the Processor and the Main Memory.
• Temporal locality suggests that whenever an

instruction or data, is first needed, this item
should be brought into Cache, as it is likely to be
needed again soon.

• Spatial locality suggests that instead of fetching
just one item from Main Memory to Cache, it is
useful to fetch several items that are located at
adjacent addresses as well.

• The term Cache Block refers to a set of
contiguous address locations of some size.

• Another term that is often used to refer to a
Cache block is a Cache Line.

23-03-2020

5

Concept of Cache Memory
• When Processor issues a Read request,

contents of a block of Memory words with
location specified are transferred into Cache.

• Later, when Program references any of the
locations in this block, the desired contents
are read directly from the Cache.

• Usually, Cache Memory can store a reasonable
no: of blocks at any given time, but this
number is small compared to total no: of
blocks in Main Memory.

23-03-2020

6

Cache Hits
• Processor issues Read and Write requests

using addresses that refer to locations in
Memory.

• The Cache controller determines whether
requested word currently exists in Cache.

• If it does, the Read or Write operation is
performed on the appropriate Cache location.

• A read or write Cache Hit is said to have
occurred.

• The Main Memory is not involved when there
is a Cache hit in a Read operation.

23-03-2020

7

Write-through
• For a Write operation, the system can proceed in

one of two ways.

• In the first technique, called the Write-through
protocol, both the Cache location and the Main
Memory location are updated.

Write-back, or Copy-back
 • The second technique is to update only Cache

location and to mark the block containing it
with an associated flag bit, called the dirty or
modified bit.

• Main Memory location of word is updated
later, when block containing this marked word
is removed from Cache to make room for a
new block.

• This technique is known as the write-back, or
copy-back.

23-03-2020

8

Comparison
• The write-through protocol is simpler than write-

back protocol, but it results in unnecessary Write
operations in Main Memory when a given Cache
word is updated several times during its Cache
residency.

• The write-back protocol also involves
unnecessary Write operations, as all words of
block are eventually written back, even if only a
single word has been changed while block was in
Cache.

• The write-back protocol is used most often, to
take advantage of the high speed with which data
blocks can be transferred to Memory chips.

Cache Miss
• A Read operation for a word that is not in the

Cache constitutes a Read Cache Miss.
• It causes the block of words containing the

requested word to be copied from Main Memory
into Cache.

• After the entire block is loaded into Cache, the
particular word requested is forwarded to
Processor.

• When a Write Cache Miss occurs using the write-
through protocol, information is written directly
into Main Memory.

• For write-back protocol, block containing the
addressed word is first brought into Cache, and
then desired word in Cache is overwritten with
the new information.

23-03-2020

9

Memory SYSTEM PERFORMANCE
ANALYSIS

• Memory system performance metrics are miss
rate or hit rate and average Memory access
time.

• Miss and hit rates are calculated as:

Ex: 1 CALCULATE CACHE PERFORMANCE

Suppose a program has 2000 data access
instructions (loads or stores), and 1250 of these
requested data values are found in the cache.

The other 750 data values are supplied to the
Processor by Main Memory or disk Memory.

What are the miss and hit rates for the cache?

Sol:

The miss rate is 750/2000 = 0.375 = 37.5%.

The hit rate is 1250/2000= 0.625 1- 0.375= 62.5%.

23-03-2020

10

Average Memory Access Time (AMAT)
• It is average time a Processor must wait for Memory

per load or store instruction.
• The Processor first looks for data in the cache.
• If the cache misses, Processor then looks in Main

Memory.
• If Main Memory misses, Processor accesses

VirtualMemory on hard disk.
• Thus, AMAT is calculated as:

• where tcache, tMM, and tVM are the access times of cache,
Main Memory, and VirtualMemory, and MRcache and
MRMM are cache and Main Memory miss rates,
respectively.

Ex: 2 CALCULATING AMAT
Suppose a computer system has a Memory
organization with only two levels of hierarchy, a
cache and Main Memory.

What is the average Memory access time given
the access times and miss rates?

Sol:

The average Memory access time is 1 + 0.1(100)=
11 cycles.

23-03-2020

11

Ex 3 IMPROVING ACCESS TIME
 An 11-cycle average Memory access time means

that the Processor spends ten cycles waiting for
data for every one cycle actually using that data.

What cache miss rate is needed to reduce the
average Memory access time to 1.5 cycles? (Use
previous ex data)

Sol:

• If the miss rate is m, the average access time is
1+ 100m.

• 1+ 100m =1.5  m= 0.5/100 = 0.005.

• Cache miss rate = 0.5%

Mapping and Replacement
• The correspondence between Main Memory

blocks and those in Cache is specified by
Mapping Method.

• When Cache is full and a Memory word that is
not in Cache is referenced, Cache controller
must decide which block should be removed
to create space for new block that contains
referenced word.

• The collection of rules for making this decision
constitutes Cache’s Replacement algorithms.

23-03-2020

12

Mapping Methods
• There are three methods to determine

where Memory blocks are placed in
Cache.

• Consider a Cache consisting of 128 blocks
of 16 words each, for a total of 2048 (2K)
words, and assume that Main Memory is
addressable by a 16-bit address.

• The Main Memory has 64K words, as 4K
blocks of 16 words each.

Direct Mapping
• The simplest way to determine Cache locations in

which to store Memory blocks is the Direct-
mapping technique.

• In this technique, block j of Main Memory maps
onto block j modulo 128 of Cache.

• Thus, whenever one of Main Memory blocks 0,
128, 256, . . . is loaded into Cache, it is stored in
Cache block 0.

• Blocks 1, 129, 257, . . . are stored in Cache block
1, and so on.

23-03-2020

13

Direct Mapped Cache

• Since more than one Memory block is mapped
onto a given Cache block position, Contention
may arise for that position even when the
Cache is not full.

• For ex, instructions of a program may start in
block 1 and continue in block 129, after a
branch.

• As this program is executed, both of these
blocks must be transferred to the block-1
position in Cache.

• Contention is resolved by allowing new block
to overwrite currently resident block.

23-03-2020

14

• With direct mapping, replacement algorithm is
simple.

• Placement of a block in Cache is determined by
its Memory address.

• The Memory address can be divided into three
fields.

• The low-order 4 bits select one of 16 words in a
block.

• When a new block enters the Cache, 7-bit Cache
block field determines Cache position in which
this block must be stored.

• The high-order 5 bits of the Memory address of
the block are stored in 5 tag bits associated with
its location in Cache.

• The tag bits identify which of 32 Main Memory
blocks mapped into this Cache position is
currently resident in Cache.

• As execution proceeds, 7-bit Cache block field
of each address generated by Processor points
to a particular block location in Cache.

• High-order 5 bits of address are compared
with tag bits associated with that Cache
location.

• If they match, then desired word is in that
block of Cache.

• If there is no match, then block containing
required word must first be read from Main
Memory and loaded into Cache.

• The direct-mapping technique is easy to
implement, but it is not very flexible.

23-03-2020

15

Main
Memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

4

Main Memory address

Tag Word
12

tag

tag

tag

Cache

Block 0

Block 1

Block 127

Associative Mapping

Associative Mapping
 • Main Memory block can be placed into any cache

position.
• Memory address is divided into two fields:
 - Low order 4 bits identify the word within a
block.
 - High order 12 bits or tag bits identify a Memory
 block when it is resident in the cache.
• Flexible, and uses cache space efficiently.
• Replacement algorithms can be used to replace

an existing block in the cache when the cache is
full.

• Cost is higher than direct-mapped cache because
of the need to search all 128 patterns to
determine whether a given block is in the cache.

23-03-2020

16

Set Associative Mapping with 2 Blocks /Set

Set Associative Mapping
 • Blocks of cache are grouped into sets.

• Mapping function allows a block of the Main Memory to
reside in any block of a specific set.

• Divide the cache into 64 sets, with two blocks per set.
• Memory block 0, 64, 128 etc. map to block 0, and they can

occupy either of the two positions.
• Memory address is divided into three fields:
 - 6 bit field determines the set number.
 - High order 6 bit fields are compared to tag fields of two
blocks in a set.
• Set-associative mapping is combination of direct and

associative mapping.
• Number of blocks per set is a design parameter.
 - One extreme is to have all the blocks in one set, requiring
no set bits (fully associative mapping).
 - Other extreme is to have one block per set, is same as
direct mapping.

23-03-2020

17

Write Buffer

Write-through:
• Each write operation involves writing to the Main Memory.
• If the Processor has to wait for the write operation to be

complete, it slows down the Processor.
• Processor does not depend on the results of the write

operation.
• Write buffer can be included for temporary storage of

write requests.
• Processor places each write request into the buffer and

continues execution.
• If a subsequent Read request references data which is still

in the write buffer, then this data is referenced in the
write buffer.

Write-back:
• Block is written back to the Main Memory when it is

replaced.
• If the Processor waits for this write to complete, before

reading the new block, it is slowed down.
• Fast write buffer can hold the block to be written, and the

new block can be read first.

34

Replacement Algorithms

• First-in, First-out(FIFO): Evict the
block that has been in the cache the
longest

• Least recently used (LRU): Evict the
block whose last request occurred
furthest in the past.

• Random: Choose a block at random
to evict from the cache.

23-03-2020

18

35

New block Old block (chosen at random)

Random policy:

FIFO policy:

Insert time: 8:00 am 7:48am 9:05am 7:10am 7:30 am 10:10am 8:45am

New block Old block(present longest)

last used: 7:25am 8:12am 9:22am 6:50am 8:20am 10:02am 9:50am

LRU policy:

New block Old block(least recently used)

The Random, FIFO, and LRU Block replacement

36

Complexity of implement(Random)
• It only requires a random or pseudo-

random number generator.

• Overhead is an O(1) additional
amount of work per replacement.

• Makes no attempt to take advantage
of any temporal or spatial localities.

23-03-2020

19

37

Complexity of implement(FIFO)
• FIFO strategy just requires a queue Q to

store references to blocks in cache

• Blocks are enqueued in Q

• Simply performs a dequeue operation on
Q to determine which Block to evict.

• This policy requires O(1) additional work
per block replacement

• Try to take advantage of temporal locality

38

Complexity of implement(LRU)
• Implementing the LRU strategy requires the

use of a priority queue Q

• When insert a Block in Q or update its key,
the Block is assigned the highest key in Q

• Each Block request and Block replacement
is O(1) if Q is implemented with a sorted
sequence based on a linked list.

• Because of the constant-time overhead and
extra space for the priority Queue Q, make
this policy less attractive from a practical
point of view.

23-03-2020

20

Virtual Memory
• In most Computers, the Physical Main Memory is

not as large as Address Space of the Processor.

• A Program, if it does not completely fit into Main
Memory, parts of it currently being executed are
in Main Memory and remaining portion is stored
in Secondary Storage such as Hard disk.

• When a new part of program is to be brought into
Main Memory for execution and if the Memory is
full, it must replace another part which is already
is in Main Memory.

• As this Secondary Storage is not actually part of
System Memory, so for CPU, the extended
portion of Secondary Storage is Virtual Memory.

• Automatically move Program and Data Blocks
into Physical Memory from Secondary
Memory when they are required for
execution.

• Virtual Memory is used to Logically extend
the size of Main Memory.

• When Virtual Memory is used, the Address
field is Virtual Address or Logical Address.

• A special Hardware unit knows as Memory
Management Unit (MMU) translates Virtual
Address into Physical Address.

23-03-2020

21

• Processor makes reference to instructions and
data in an address space that is independent of
available Physical Main Memory space.

• The binary addresses that Processor issues for
either instructions or data are called Virtual or
Logical addresses.

• These addresses are translated into Physical
addresses by a combination of hardware and
software actions.

• If a Virtual address refers to a part of program or
data space that is in Physical Memory, then
contents of location in Main Memory are
accessed immediately.

• Otherwise, contents of referenced address must
be brought into a suitable location in Memory
before they can be used.

Virtual Memory Organization

23-03-2020

22

• A special hardware unit, called Memory
Management Unit (MMU), keeps track of
which parts of Virtual Address space are in
Physical Memory.

• When desired data or instructions are in Main
Memory, MMU translates Virtual Address into
corresponding Physical Address.

• Then, requested Memory access proceeds in
the usual manner.

• If data are not in Main Memory, MMU causes
the OS to transfer data from disk to Memory.

• Such transfers are done using DMA scheme.

Address Translation
• To translate Virtual Addresses into Physical

addresses, assume that all programs and data
consist of fixed-length units called Pages.

• Page consists of a Block of words that occupy
contiguous locations in the Main Memory.

• Pages range from 2K to 16K bytes in size.

• They constitute basic unit of info transferred
between Main Memory and Disk whenever
MMU determines that a transfer is required.

• Pages should not be too small, because access
time of a disk is much longer (several mS) than
access time of Main Memory (several nS).

23-03-2020

23

• It takes a large amount of time to locate data
on disk, but once located, data can be
transferred at a rate of several MB per second.

• But if Pages are too large, it is possible that a
large portion of a Page may not be used.

• Leads to waste of Memory space.

• The Virtual-Memory mechanism bridges size
and speed gaps between Main Memory and
Secondary Storage and is usually implemented
in part by Software techniques.

Virtual-Memory Address Translation

23-03-2020

24

Paging
• This is a Virtual Memory address-translation

method based on the concept of fixed-length
Pages.

• Each Virtual Address generated by Processor is
inferred as a Virtual Page Number (high-order
bits) followed by an Offset (low-order bits)
that specifies location of a Byte (or Word)
within a Page.

• Information about Main Memory location of
each Page is kept in a Page Table.

• This information includes Main Memory
Address where Page is stored and current
status of Page.

• An area in Main Memory that can hold one
Page is called a Page Frame.

• Starting address of Page Table is kept in a Page
Table Base Register.

• By adding Virtual Page number to contents of
this register, address of corresponding entry in
Page Table is obtained.

• Contents of this location give starting address
of Page if that Page currently resides in Main
Memory.

23-03-2020

25

• Each entry in Page Table also includes some
Control bits that describe Status of Page while
it is in Main Memory.

• One bit indicates Validity of Page, that is,
whether the Page is actually loaded in Main
Memory.

• It allows OS to invalidate the Page without
actually removing it.

• Another bit indicates whether the Page has
been modified during its residency in the
Memory.

• This information is needed for the Page to be
written back to disk before it is removed from
Main Memory to make room for another
Page.

• Other control bits indicate various restrictions
that may be imposed on accessing the Page.

• For example, a program may be given full read
and write permission, or it may be restricted
to read accesses only.

23-03-2020

26

Translation Lookaside Buffer
• Page Table information is used by MMU for every

read and write access.
• Ideally, Page Table should be situated within MMU.
• Unfortunately, the Page Table may be rather large.
• Since MMU is normally implemented as part of

Processor chip, it is impossible to include complete
Table within MMU.

• Instead, a copy of only a small portion of Table is
placed within MMU, and the complete Table is
kept in Main Memory.

• The portion within MMU consists of entries
corresponding to most recently accessed Pages.

• They are stored in a small Table, usually called
Translation Lookaside Buffer (TLB).

23-03-2020

27

• TLB functions as a cache for Page Table in
Main Memory.

• Each entry in TLB includes a copy of
information in corresponding entry in Page
Table.

• In addition, it includes Virtual address of Page,
which is needed to search TLB for a particular
Page.

• A possible organization of a TLB uses the
Associative-Mapping technique.

• Set-Associative mapped TLBs are also found in
commercial products.

23-03-2020

28

• Address translation proceeds as follows:

– Given a Virtual address, MMU looks in TLB
for the referenced Page.

– If Page Table entry for this Page is found in
TLB, Physical address is obtained
immediately.

– If there is a Miss in TLB, then required entry
is obtained from Page Table in Main
Memory and TLB is updated.

• Need to ensure contents of TLB are always
same as contents of Page Tables in Memory.

• When OS changes contents of a Page Table, it
must simultaneously invalidate corresponding
entries in TLB.

• One of the control bits in TLB is provided for
this purpose.

• When an entry is invalidated, TLB acquires
new information from Page Table in Memory
as part of the MMU’s normal response to
Access Misses.

23-03-2020

29

Page Faults
• When a program generates an access request to a

Page that is not in the Main Memory, a Page Fault is
said to have occurred.

• The entire Page must be brought from the disk into
the Memory before access can proceed.

• When it detects a Page fault, the MMU asks the OS
to intervene by raising an Exception (Interrupt).

• Processing of program that generated Page fault is
interrupted, and control is transferred to the OS.

• OS copies requested Page from disk into Main
Memory.

• Since this process involves a long delay, OS may
begin execution of another program whose Pages are
in Main Memory.

• When Page transfer is completed, execution of
interrupted program is resumed.

• When MMU raises an interrupt to indicate a Page
fault, the instruction that requested Memory
access may have been partially executed.

• Need to ensure that interrupted program
continues correctly when it resumes execution.

• There are two options:

– Either execution of interrupted instruction continues
from point of interruption, or instruction must be
restarted.

– Design of a particular Processor dictates which of
these two options is used.

23-03-2020

30

Segmentation
 • Segmentation is also a Memory management

scheme.

• It supports the user’s view of the Memory.

• The process is divided into variable size
Segments and loaded to the logical Memory
address space.

• The Logical address space is the collection of
variable size Segments.

• Each Segment has its name and length.

• For the execution, the Segments from Logical
Memory space are loaded to the Physical
Memory space.

• The address specified by the user contain two
quantities, Segment name and Offset.

• The Segments are numbered and referred by
the Segment number instead of Segment
name.

• This Segment number is used as an index in
the Segment table, and Offset value decides
the length or limit of the Segment.

• The Segment number and the Offset together
combine to generates the address of the
Segment in the Physical Memory space.

23-03-2020

31

Key Differences Between Paging and
Segmentation

 • The basic difference between Paging and
Segmentation is that a Page is always of fixed
block size whereas, a Segment is of variable
size.

• Paging may lead to Internal Fragmentation as
Page is of fixed block size, but it may happen
that the process does not acquire the entire
block size which will generate the internal
fragment in Memory.

• Segmentation may lead to External
Fragmentation as Memory is filled with
variable sized blocks.

23-03-2020

32

• In Paging the user only provides a single
integer as the address which is divided by the
hardware into a Page number and Offset.

• On the other hands, in Segmentation the user
specifies address in two quantities i.e. Segment
number and Offset.

• The size of Page is decided or specified
by hardware.

• But, size of Segment is specified by user.
• In Paging, Page table maps the logical address to

the Physical address, and it contains base address
of each page stored in the frames of Physical
Memory space.

• However, in Segmentation, Segment
table maps Logical address to Physical address,
and it contains Segment number and Offset .

