NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited) .
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala) Moudos e 3

e Citizen
Since 1968

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE MATERIALS

EC 206: COMPUTER ORGANISATION

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in
education.

MISSION OF THE INSTITUTION
NCERC is committed to transform itself into a center of excellence in Learning and Research in
Engineering and Frontier Technology and to impart quality education to mould technically competent
citizens with moral integrity, social commitment and ethical values.
We intend to facilitate our students to assimilate the latest technological know-how and to imbibe
discipline, culture and spiritually, and to mould them in to technological giants, dedicated research
scientists and intellectual leaders of the country who can spread the beams of light and happiness among
the poor and the underprivileged.
ABOUT DEPARTMENT

4 Established in: 2002

¢ Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI
¢ Approved by AICTE New Delhi and Accredited by NAAC

€ Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Provide well versed, communicative Electronics Engineers with skills in Communication systems with
corporate and social relevance towards sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets
(things) are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields
of interest later.

4) Promoting leading edge Research & Development through collaboration with academia &
industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1. To prepare students to excel in postgraduate programmes or to succeed in industry / technical
profession through global, rigorous education and prepare the students to practice and innovate recent
fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering
fundamentals required to solve engineering problems and to have strong practical knowledge required
to design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze,
design, and create novel products and solutions for the real life problems.

PEO4. To provide student with an academic environment aware of excellence, effective
communication skills, leadership, multidisciplinary approach, written ethical codes and the life-long
learning needed for a successful professional career.

PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: ldentify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions wusing first principles of
mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Facility to apply the concepts of Electronics, Communications, Signal processing, VLSI,
Control systems etc., in the design and implementation of engineering systems.

PSO2: Facility to solve complex Electronics and communication Engineering problems, using
latest hardware and software tools, either independently or in team.optimization.

COURSE OUTCOMES
EC 206

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

SYLLABUS

Course Course Name L-T-P - Year of
code Credits Introduction
EC206 COMPUTER ORGANISATION 3-0-0-3 2016

Prerequisite: EC207 Logic Circuit Design
Course Objectives
e To impart knowledge in computer architecture.
e To impart knowledge in machine language programming.
To develop understanding on 1/O accessing techniques and memory structures.

Syllabus

Functional units of a computer, Arithmetic circuits, Processor architecture, Instructions and
addressing modes, Execution of program, Micro architecture design process, Design of data path
and control units, 1/0 accessing techniques, Memory concepts, Memory interface, Cache and
Virtual memory concepts.

Expected outcome .
The students will be able to:
i. Understand the functional units of a computer
i. Identify the different types of instructions
iili. Understand the various addressing modes
iv. Understand the I/O addressing system
v. Categorize the different types of memories
Text Books:

1. David A. Patterson and John L. Hennessey, Computer Organisation and
Design, Fourth Edition, Morgan Kaufmann

2. David Money Harris, Sarah L Harris, Digital Design and

Computer Architecture,M Kaufmann — Elsevier, 2009
References

1. Carl Hamacher : “Computer Organization ”, Fifth Edition, Mc Graw Hill

2. John P Hayes: “Computer Architecture and Organisation”, Mc Graw Hill
3. William Stallings: “Computer Organisation and Architecture”, Pearson Education
4. Andrew S Tanenbaum: “Structured Computer Organisation”, Pearson Education
5. Craig Zacker: “PC Hardware : The Complete Reference”, TMH
Course Plan
Sem.
Module Contents Hours | Exam
Marks
Functional units of a computer
Arithmetic Circuits: Adder-carry propagate adder, Ripple carry 4
adder, Basics of carry look ahead and prefix adder, Subtractor,
I Comparator, ALU 15%
Shifters and rotators, Multiplication, Division 3
Number System: Review of Fixed point & Floating point number 1
system
Architecture : Assembly Language, Instructions, Operands, 2
I Registers, Register set, Memory, Constants 15%
Machine Language: R-Type, [I-Type, J-Type Instructions, 3
Interpreting machine language code
FIRST INTERNAL EXAMINATION
i MIPS Addressing modes — Register only, Immediate, Base, PC- 3 15%
relative, Pseudo - direct

MIPS memory map, Steps for executing a program - Compilation,
Assembling, Linking, Loading

Pseudo instructions, Exceptions, Signed and Unsigned instructions,
Floating point instructions

MIPS Microarchitectures — State elements of MIPS processor

15%

Design process and performance analysis of Single cycle
processor, Single cycle data path, Single cycle control for R — type
arithmetic/logical instructions.

Design process and performance analysis of multi cycle processor,
Multi cycle data path, Multi cycle control for R — type
arithmetic/logical instructions.

SECOND INTERNAL EXAMINATION

b
WSSl — ALCessIIE U AdevICes, MIOUSs U1 dald UallsIel,

Programmed I/0. Interrupt driven /O, Direct Memory Access,
Standard I/O interfaces — Serial port, Parallel port, PCI, SCSI. and

LISE.

Memory system — Hierarchy., Characteristics and Performance
analysis. Semiconductor memories (RAM, ROM, EPROM),
Memory Cells — SRAM and DRAM, internal organization of
memory chip, Organization of a memory unit.

Cache Memory — Concept/principle of cache memory, Cache size,
mapping methods — direct, associated, set associated, Replacement
algorithms. Write policy- Write through. Write back.

Virtual Memory — Memory management., Segmentation, Paging,

Address translation. Page table. Translation look aside buffer.
END SEMESTER EXAM

Question Paper Pattern (End Sem Exam)

Maximum Marks: 100 Time : 3 hours

The question paper shall consist of three parts. Part A covers modules | and Il, Part B covers
modules 1l1 and 1V, and Part C covers modules V and VI. Each part has three questions uniformly
covering the two modules and each question can have maximum four subdivisions. In each part, any
two questions are to be answered. Mark patterns are as per the syllabus with maximum80 % for
theory and 20% for logical/numerical problems, derivation and proof.

ECE DEPARTMENT, NCERC PAMPADY

QUESTION BANK
Module-1:

. Perform the following shift operations on 8-bit binary representations of the decimal
numbers and hence verify the shift rules (wherever applicable):

(@ 4<<4 (b)16<<2 (c)-32 >>> 4 (d)64 >> 4 (e)640>>2 (f)32<<05
Implement a two Operand 8-bit Equality Comparator for the numbers A and B
represented in 8-bit binary. State the rule for the operations.

Implement a 32-bit Carrylookahead Adder, starting from the 4-bit Adder. Clearly depict
the logic diagrams with the supporting analyses. Compute the overall delay of the Adder.
From first principles, construct a Carry Prefix Adder with logic diagram and supporting
analyses. Estimate the delay of the Adder.

Implement a 32-bit Adder using Ripple Carry Adder. Explain operation. Estimate the
total delay.

. Construct an 8-bit Array Multiplier to handle 8-bit Multiplicand and 8-bit Multiplier,
with the aid of a supporting binary example of the multiplication process. Estimate the
delay of the Multiplier.

. Construct a non-restoring Divider as a Sequential circuit with the aid of a supporting
example of division and the control flow process for the operation.

. Construct a Multiplier as a Sequential circuit with the aid of a supporting example of
multiplication and the control flow process for the operation.

. Perform the implementation of 4-bit Rotators for ROL and ROR operations on an 4-bit
operands A to yield Y, with proper use of the shamt bits.

. Represent the two decimal numbers 7.875 and 0.1875 in the IEEE 754 standard single
precision floating point number format and perform the Addition of the numbers with
final representation of the result in the same format.

. Perform the implementation of 4-bit Shifters for LSL, LSR and ASR operations on an
4-bit operands A to yield Y, with proper use of the shamt bits.

. Implement a two Operand 4-bit Magnitude Comparator for the numbers A and B
represented in 4-bit binary. State the rules for the operation.

. Examine the operation of a modern Subtractor with the aid of a sketch and hardware
details.

. Construct an eight-bit Equality Comparator from first principles and list the hardware
requirements. Does it validate the three Y’s?

. Investigate the operation of a 4-bit Shifter with the aid of hardware representation
diagram with wirings for left shift, logical right shift and arithmetic right shift. How the
wiring would be tweaked to support Rotator?

. Examine the Functional Units of a Computer with the aid of a sketch and hardware
details.

ECE DEPARTMENT, NCERC PAMPADY

. Compare and Contrast RISC and CISC in the context of Computer Architectures, with
the help of examples.

. Investigate the hardware of the ALU Implementation with symbol, functional table and
internal structure. Verify its adaptability in the context of modern computing.

. Investigate the operation of an 8-bit Shifter with the aid of hardware representation
diagram for left shift, logical right shift and arithmetic right shift. How does it support
Rotation operation?

. Give definitions of Computer Organization, Computer Architecture and Computer
Hardware. State examples of Computers.

. Perform the following operations using 8-bit binary representations and justify the shift
rules: 16 << 2; -32>>>4;

. Investigate the operation of the Carry Look Ahead Adder with the help of logic diagrams.
Calculate the delay for this Adder and compare with that of Ripple Carry Adder.

. Compare the delays of a 32-bit ripple carry adder and a 32-bi5 carry look ahead adder
with 4-bit blocks. Assume each 2-i/p gate delay is 200ps and the FA delay is 400ps.

Module 1 and 2
. With the help of a block diagram, describe the structure and functional operation of an

Digital Computer.
. Write short notes on:
a. Differences between RAM and ROM
. Computer Hardware
Computer Architecture
. Assembly language and its relevance in the context of Computer Architecture
Logical Implementation of a Full Adder from Truth Table, K-Map Minimizations and
diagram.
Internal Registers of the Processor and their functions

Describe the principle and operation of Ripple Carry Adder with the aid of circuit
diagram and proper design. Estimate the delay in this circuit.

. Perform the following shift operations on 8-bit binary representations of the decimal
numbers and hence verify the shift rules (wherever applicable):
(b) 4<<4 (b)16<<2 (c)-32>>>4 (d)64>>4 (e)640>>2 (f)32<<05

Describe the principle and operation of Carry Lookahead Adder with the aid of circuit
diagram and proper design. Estimate the delay in this circuit.

. Compare and contrast Ripple Carry Adder with Carry Lookahead Adder.
Describe the implementation of a 4-bit Multiplier using Array Multiplier with the aid of
all appropriate diagrams and supporting analyses. State the hardware requirements for n-
bit multiplication.

ECE DEPARTMENT, NCERC PAMPADY

Describe the implementation of a 4-bit Multiplier using Sequential Circuit Multiplier
with the aid of all appropriate diagrams and supporting analyses. State the hardware
requirements for n-bit multiplication.

Describe the implementation of a 4-bit Divider using Sequential Circuit Divider with the
aid of all appropriate diagrams and supporting analyses.

. Explain the Shifters and Rotators by simple examples. Discuss the hardware
requirements. Implement 4-bit Shifters for logical and arithmetic operations.

. Provide the logical implementation of the ALU with the aid of supporting analyses,
functional table and internal representation. Describe its operations. Suggest how Flags
could be made available.

. Explain the Comparator circuit used in the Processor with implementation for the
different types. Choose 4-bit operands for your answer.

. Describe how a Subtractor can be implemented in modern fast arithmetic circuits. Use
appropriate logic diagrams and other representations.

. Estimate the delay of a 64-bit carry prefix adder assuming that each 2-input Gate has a
delay of 400 ps.

. With the help of suitable examples, differentiate between the R-type and I-type
Instructions in MIPS machine language.

. llustrate the IEEE standard for single precision and double precision floating point
numbers.

. Write short notes on:

a. MIPS Register Set.
b. Byte Addressable Memory.
c. Format of J-Instructions in MIPS machine language

. Assume that opcode ‘addi’ is represented by 81, register ‘add’ function is represented by
the function code 320, and register sO to s7 are represented by 1615 to 230, in MIPS
Machine language.

a. Translate the following machine language code into MIPS assembly language:
O0x2237FFF3

b. Translate the following MIPS assembly code into MIPS machine code in hex format:
add $s0, $s4, $s5

. Describe the structure of the N-bit Non-restoring Divider as a sequential circuit with the
help of appropriate logic diagram and illustrations with analyses.

. Translate the following high-level code into assembly language. Assume variables a to
c are held in registers $s0 to $s2andf to jarein $s3 to $s7.

a =b - c;
= (g +h) - (1 + 3J);

. Describe the types of Digital Computers and the factors involved in comparing their
performance.

ECE DEPARTMENT, NCERC PAMPADY

. Investigate how the arithmetic operations of Addition/Subtraction and Multiplication are
performed on floating point operands within the Processor.

Module 3 and 4
. Describe the Addressing Modes of the MIPS with the aid of examples of Instructions for

each type.

. What is meant by Microarchitecture? Explain the relevance with regards to MIPS
architecture.

. Explain the Performance Analysis of Computer systems.

. Explain the MIPS Memory Map with the help of a diagram, stating lucidly the various
sections or segments and their properties and functions.

. With the aid of a diagram, describe the steps involved in translating and executing a high
level language program.

. Describe the Pseudo-instructions used in MIPS architecture with the help of four
examples. Decompose the same into legitimate MIPS instructions.

. Describe the concept of Exception Processing and its implementation in MIPS
architecture.

. Explain the signed and unsigned instructions of the MIPS for different categories of
Instructions with the aid of lucid examples.

. Describe the Floating Point Instructions of the MIPS architecture with the help of
examples of instructions and their usage.

. Compare and contrast the three microarchitectures used for MIPS architecture.

. Derive the expression for Cycle Time in a Single Cycle MIPS processor. If the Cycle
time for a single cycle MIPS processor is 1000 pS, calculate the total execution time for a
program with 10 lakh instructions.

. List the main drawbacks of Single Cycle Microarchitecture. How are they eliminated in
Multi Cycle Microarchitecture?

. With the help of suitable examples, differentiate between the R-type and I-type
Instructions in MIPS machine language.

. llustrate the IEEE standard for single precision and double precision floating point
numbers.

. Write short notes on:

d. MIPS Register Set.
e. Byte Addressable Memory.
f. Format of J-Instructions in MIPS machine language

. Assume that opcode ‘addi’ is represented by 819, register ‘add’ function is represented by
the function code 3230, and register sO to s7 are represented by 1610 to 2319, in MIPS
Machine language.

c. Translate the following machine language code into MIPS assembly language:
O0x2237FFF3

ECE DEPARTMENT, NCERC PAMPADY

d. Translate the following MIPS assembly code into MIPS machine code in hex format:
add $s0, $s4, $s5

. Describe the organization of the Datapath of a Single Cycle Microarchitecture for an 1w
instruction. Support your answer with the aid of diagrams of the interconnections
between the State Elements.

. Describe the organization of the enhanced or extended Datapath of a Single Cycle
Microarchitecture for inclusion of sw instruction, R-type instructions and beqg
instructions. Support your answer with the aid of diagrams of the interconnections
between the State Elements.

. Describe the organization of the Control unit of a Single Cycle Microarchitecture for an
1w instruction and extend the same for the other categories of Instructions.

. Describe the organization of the Datapath of a Multi Cycle Microarchitecture for an 1w
instruction and other categories of Instructions. Support your answer with the aid of
diagrams of the interconnections between the State Elements.

. Describe the organization of the Control Unit of a Multi Cycle Microarchitecture for an
1w instruction and other categories of Instructions. Support your answer with the aid of
diagrams of the interconnections between the State Elements.

. Derive the expression for CPI (M) and Cycle Time in a Multi Cycle MIPS processor. If
the Cycle time for a multi cycle MIPS processor is 1000 pS, calculate the total execution
time for a program with 10 lakh instructions. Compare and contrast this result with that of
Single Cycle Microarchitecture.

MODULE 5

. State the various types of Input and Output devices that need to be used in a modern General
purpose or Embedded Computer, and provide details how 1/0 Capability is provided?

. Explain how accessing 1/0 devices is made possible in modern Computer, with the aid of a
generic sketch.

. Explain the relevance of Memory Mapped 1/0.

. State the need for 1/0 Device Interface and illustrate with the aid of a diagram the connections
between CPU and 1/O devices.

. State the modes of 1/0O Data Transfer.
. Explain Programmed controlled 1/0 mechanism.

. Explain Interrupt Driven 1/O mechanism with the aid of a diagram.

. What is DMA? How does it use Interrupts?

ECE DEPARTMENT, NCERC PAMPADY

9. Explain the DMA Controller Registers with the aid of diagrams.

10. Describe the DMA transfer with the aid of diagram and give details of the role of DMA
Controller.

11. What is a Port and what are the types? Explain.

12. Explain functions of 1/0 Interface.

13. What is the need for a standard for /O device connections?

14. Describe the objectives of USB and provide technical details of the standard.
15. Describe PCI Bus with the aid of diagram and give its advantages and benefits.

16. Investigate the SCSI Bus and how its serves the purpose of efficient data transfer, with
details of a typical read operation.

. Investigate Memory Hierarchy with the aid of a diagram and provide details of the different
layers.

18. Explain the characteristics of Memory.

19. Describe Static Memories with the aid of diagrams.

20. Describe Dynamic RAM with the aid of a diagram.

21. Provide the internal organization of a Dynamic Memory Chip with a diagram.
22. Compare and Contrast Asynchronous and Synchronous DRAMS.

23. Explain the relevance of SIMMs and DIMMs in modern Computer Systems.

24. Compare and Contrast RAM and ROM by providing their inherent characteristics and
differences.

25. With the aid of a diagram, explain the ROM Cell.
26. Explain PROM, EPROM and EEPROM.
27. Describe Flash memory and Flash Cards.

28. Compare and Contrast Flash Drives and Hard Disk Drives.

ECE DEPARTMENT, NCERC PAMPADY

MODULE 6

. State and explain the Principle of Locality.
. State and explain the Locality of Reference.
Describe the Role of Cache memory w.r.t Memory Hierarchy.
. With a diagram explain the Cache Memory Organization.
Define Cache Hit and Miss.
Explain the Cache Read process.
. Compare the Cache Write- Write Through and Write Back a.k.a Copy back mechanism.
Define Cache Hit Rate ,Miss Rate, Ave Mem Access Time (AMAT)

. Perform Cache Hit Rate ,Miss Rate, AMAT Calculations (Refer worked out questions in
notes)

. What is meant by Mapping and Replacement?

. Perform an Analysis of Direct Mapped Cache or Direct Mapping with the aid of diagram.

. Perform an Analysis of Associative Cache Mapping with the aid of diagram.

. Perform an Analysis of Set Associative Cache Mapping with the aid of diagram .
. Explain the use of Write Buffer.

. Perform an Analysis of Replacement Algorithms.

. Compare the complexity of implementation of the replacement algorithms.

. Explain the need for Virtual Memory in Computers.

. Analyze the Virtual Memory Organization with the help of a diagram.

. Explain the Virtual Address or Logical Address.

. Describe the Memory Management Unit (MMU) with a diagram.

. Describe the Address Translation mechanism.

. Explain the Virtual Memory Address Translation

ECE DEPARTMENT, NCERC PAMPADY

23. Describe Paging with diagram.

24. Describe Translational Look aside Buffer (TLB) with diagram.

25. Explain Page Faults.

26. Describe the Segmentation with the help of a diagram.

27. Compare and contrast Paging and Segmentation.

ECE DEPARTMENT, NCERC PAMPADY

EC206 COMPUTER ORGANISATION MODULE |

Introduction to Computer Organization

Computer Organization is concerned with the function and design of the various units or
sections of Digital Computers, that store and process information, receive information from
external sources and send computed results to external destinations.

Computer Architecture encompasses the specification of an Instruction Set and the hardware
units that implement Instructions.

Computer Hardware consists of Electronic circuits, Displays, Electronic, magnetic and optical
storage media, Electromechanical equipment and Communication facilities.

Computer Software is concerned with the System Software or Operating System that manages
the Hardware as well as the Application Software as well as Programming languages and
Utilities.

Digital Computer is a fast Electronic Calculating Machine that accepts digitize input
information, processes it according to a list of internally stored Instructions, and produces
resulting output information. The list of instructions is called computer program and the internal
storage is computer memory.

Computer Types

Since their introduction in the 1940s, digital computers have evolved into many different types
that vary widely in size, cost, computational power, and intended use. Modern computers can be
divided roughly into four general categories:

« Embedded computers are integrated into a larger device or system in order to automatically
monitor and control a physical process or environment. They are used for a specific purpose
rather than for general processing tasks. Typical applications include industrial and home
automation, appliances, telecommunication products, and vehicles. Users may not even be aware
of the role that computers play in such systems.

« Personal computers have achieved widespread use in homes, educational institutions, and
business and engineering office settings, primarily for dedicated individual use. They support a
variety of applications such as general computation, document preparation, computer-aided
design, audiovisual entertainment, interpersonal communication, and Internet browsing. A
number of classifications are used for personal computers.

Desktop computers serve general needs and fit within a typical personal workspace.

Workstation computers offer higher computational capacity and more powerful graphical display
capabilities for engineering and scientific work.

Module | Module I Part-1 Page 1

EC206 COMPUTER ORGANISATION MODULE |

Finally, Portable and Notebook computers provide the basic features of a personal computer in a
smaller lightweight package. They can operate on batteries to provide mobility.

« Servers and Enterprise systems are large computers that are meant to be shared by a potentially
large number of users who access them from some form of personal computer over a public or
private network. Such computers may host large databases and provide information processing
for a government agency or a commercial organization.

« Supercomputers and Grid computers normally offer the highest performance. They are the
most expensive and physically the largest category of computers. Supercomputers are used for
the highly demanding computations needed in weather forecasting, engineering design and
simulation, and scientific work. They have a high cost. Grid computers provide a more cost-
effective alternative. They combine a large number of personal computers and disk storage units
in a physically distributed high-speed network, called a grid, which is managed as a coordinated
computing resource. By evenly distributing the computational workload across the grid, it is
possible to achieve high performance on large applications ranging from numerical computation
to information searching.

There is an emerging trend in access to computing facilities, known as cloud computing.
Personal computer users access widely distributed computing and storage server resources for
individual, independent, computing needs. The Internet provides the necessary communication
facility. Cloud hardware and software service providers operate as a utility, charging on a pay-as-
you-use basis.

FUNCTIONAL UNITS OF A COMPUTER

Arithmetic
Input and
logic
Memory
Qutput Confrol
110 Processor

Figure 1.1 Basic functional units of a computer.

Module | Module I Part-1 Page 2

EC206 COMPUTER ORGANISATION

MODULE |

A computer consists of five functionally independent main parts: input, memory, arith-
metic and logic, output, and control units, as shown in Figure 1.1. The input unit accepts
coded information from human operators, from electromechanical devices such as key-
boards, or from other computers over digital communication lines, The information re-
ceived is either stored in the computer’s memory for later reference or immediately used
by the arithmetic and logic circuitry to perform the desired operations. The processing
steps are determined by a program stored in the memory. Finally, the results are sent
back to the outside world through the output unit. All of these actions are coordinated
by the control unit. Figure 1.1 does not show the connections among the functional
units. These connections, which can be made in several ways, are discussed throughout
this book. We refer to the arithmetic and logic circuits, in conjunction with the main
control circuits, as the processor, and input and output equipment is often collectively
referred to as the input-output (1/0) unit.

We now take a closer ook atthe information handled by acomputer. Itis convenient
to categorize this information as either instructions or data. Instructions, or machine
instructions, are explicit commands that

* Govem the transfer of information within a computer as well as between the com-
puter and its /O devices

+ Specify the arithmefic and logic operations to be performed

A list of instructions that performs a task is called & program. Usually-the program
is stored in the memory. The processor then fetches the instructions that make up the
program from the memory, one afier another, and performs the desired operations. The
computer is completely controlled by the stored program, except for possible external
interruption by an operator or by 1/O devices connected to the machine.

Data are numbers and encoded characters that are used as operands by the instruc-
tions. The term data, however; is often used to mean any digital information. Within this
definition of data, an entire program (that is, a list of instructions) may be considered
as data if it is to be processed by another program. An example of this is the task of
compiling a high-level language source program into a list of machine instructions con-
stituting a machine language program, called the object program. The source program
is the input data to the compiler program which translates the source program into a
machine language program.

Module | Module | Part-1

Page 3

EC206 COMPUTER ORGANISATION MODULE |

. Ioformation handled by -a computer must be encoded in a suitable format. Most
present-day hardware employs digital circuits that have only two stable states, ON and
OFF (see Appendix A). Each number, character, or instruction is encoded as a string of
binary digits called bits, each having one of two possible values, 0 or 1. Numbers are
usually represented in positional binary notation, as discussed in detail in Chapters 2
and 6. Occasionally, the binary-coded decimal (BCD) format is employed, in which
each decimal digit is encoded by four bits.
Alphmummcchmmmmalsoexpmsedmtermsofbmarycm&vmlmd-
ing schemes have been developed. Two of the most widely used schemes are ASCH
(American Standard Code for Information Interchange), in which each character is rep-
m&dasa?—htcode,and@CDIC(EdeedBmary—CodedDemmalMcbmgv
Code), in which cight bits are used to denote a character. A more detailed description

Input Unit
Computers accept coded information through input units. The most common input device is the

keyboard. Whenever a key is pressed, the corresponding letter or digit is automatically translated
into its corresponding binary code and transmitted to the processor.

Many other kinds of input devices for human-computer interaction are available, including the
touchpad, mouse, joystick, and trackball. These are often used as graphic input devices in
conjunction with displays. Microphones can be used to capture audio input which is then
sampled and converted into digital codes for storage and processing. Similarly, cameras can be
used to capture video input. Digital communication facilities, via the Internet, can also provide
input to a computer from other computers and database servers.

Memory Unit

The function of the memory unit is to store programs and data. There are two classes of storage,
called primary and secondary.

Primary Memory
Primary memory, also called main memory, is a fast memory that operates at electronic speeds.

Programs must be stored in this memory while they are being executed. The memory consists of
a large number of semiconductor storage cells, each capable of storing one bit of information.
These cells are rarely read or written individually. Instead, they are handled in groups of fixed
size called words. The memory is organized so that one word can be stored or retrieved in one
basic operation. The number of bits in each word is referred to as the word length of the

computer, typically 16, 32, or 64 bits.

Module | Module I Part-1 Page 4

EC206 COMPUTER ORGANISATION MODULE |

To provide easy access to any word in the memory, a distinct address is associated with each
word location. Addresses are consecutive numbers, starting from 0, that identify successive
locations. A particular word is accessed by specifying its address and issuing a control command
to the memory that starts the storage or retrieval process.

Instructions and data can be written into or read from the memory under the control of the
processor. It is essential to be able to access any word location in the memory as quickly as
possible. A memory in which any location can be accessed in a short and fixed amount of time
after specifying its address is called a random-access memory (RAM). The time required to
access one word is called the memory access time. This time is independent of the location of the
word being accessed. It typically ranges from a few nanoseconds (ns) to about 100 ns for current
RAM units.

Cache Memory

As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is used to hold
sections of a program that are currently being executed, along with any associated data. The

cache is tightly coupled with the processor and is usually contained on the same integrated-
circuit chip. The purpose of the cache is to facilitate high instruction execution rates.

Secondary Storage

Although primary memory is essential, it tends to be expensive and does not retain information
when power is turned off. Thus additional, less expensive, permanent secondary storage is used
when large amounts of data and many programs have to be stored, particularly for information
that is accessed infrequently. Access times for secondary storage are longer than for primary
memory. A wide selection of secondary storage devices is available, including magnetic disks,
optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit

Most computer operations are executed in the arithmetic and logic unit (ALU) of the processor.
Any arithmetic or logic operation, such as addition, subtraction, multiplication, division, or
comparison of numbers, is initiated by bringing the required operands into the processor, where
the operation is performed by the ALU. For example, if two numbers located in the memory are
to be added, they are brought into the processor, and the addition is carried out by the ALU. The
sum may then be stored in the memory or retained in the processor for immediate use.

When operands are brought into the processor, they are stored in high-speed storage elements
called registers. Each register can store one word of data. Access times to registers are even
shorter than access times to the cache unit on the processor chip.

Module | Module I Part-1 Page 5

EC206 COMPUTER ORGANISATION MODULE |

Output Unit

The output unit is the counterpart of the input unit. Its function is to send processed results to the
outside world. A familiar example of such a device is a printer. Most printers employ either
photocopying techniques, as in laser printers, or ink jet streams. Such printers may generate
output at speeds of 20 or more pages per minute. However, printers are mechanical devices, and
as such are quite slow compared to the electronic speed of a processor.

Some units, such as graphic displays, provide both an output function, showing text and
graphics, and an input function, through touchscreen capability. The dual role of such units is the
reason for using the single name input/output (1/0O) unit in many cases.

Control Unit

The memory, arithmetic and logic, and /O units store and process information and perform input
and output operations. The operation of these units must be coordinated in some way. This is the
responsibility of the control unit. The control unit is effectively the nerve center that sends
control signals to other units and senses their states.

I/0 transfers, consisting of input and output operations, are controlled by program instructions
that identify the devices involved and the information to be transferred. Control circuits are
responsible for generating the timing signals that govern the transfers and determine when a
given action is to take place. Data transfers between the processor and the memory are also
managed by the control unit through timing signals. It is reasonable to think of a control unit as a
well-defined, physically separate unit that interacts with other parts of the computer. In practice,
however, this is seldom the case. Much of the control circuitry is physically distributed
throughout the computer. A large set of control lines (wires) carries the signals used for timing
and synchronization of events in all units.

The operation of a computer can be summarized as follows:

 The computer accepts information in the form of programs and data through an input unit and
stores it in the memory.

* Information stored in the memory is fetched under program control into an arithmetic and logic
unit, where it is processed.

* Processed information leaves the computer through an output unit.

* All activities in the computer are directed by the control unit.

Module | Module I Part-1 Page 6

EC206 COMPUTER ORGANISATION MODULE |

ARITHMETIC CIRCUITS

Arithmetic circuits are the central building blocks of computers. Computers and digital logic
perform many arithmetic functions: addition, subtraction, comparisons, shifts, multiplication, and
division.

The Three-Y’s

Designers use the three “-y’s” to manage complexity: hierarchy, modularity, and regularity.
These principles apply to both software and hardware systems.

Hierarchy involves dividing a system into modules, then further sub-dividing each of these
modules until the pieces are easy to understand.

Modularity states that the modules have well-defined functions and interfaces, so that they
connect together easily without unanticipated side effects.

Regularity seeks uniformity among the modules. Common modules are reused many times,
reducing the number of distinct modules that must be designed.

These building blocks are not only useful in their own right, but they also demonstrate the
principles of Hierarchy, Modularity, and Regularity. The building blocks are hierarchically
assembled from simpler components such as logic gates, multiplexers, and decoders. Each
building block has a well-defined interface and can be treated as a black box when the
underlying implementation is unimportant. The regular structure of each building block is easily
extended to different sizes.

Addition

Addition is one of the most common operations in digital systems. We first consider how to add
two 1-bit binary numbers. We then extend to N-bit binary numbers. Adders also illustrate trade-
offs between speed and complexity.

Half Adder

We begin by building a 1-bit half Adder. As shown, the half Adder has two inputs, A and B, and
two outputs, S and Coy. S is the sum of A and B. If A and B are both 1, S is 2, which cannot be
represented with a single binary digit. Instead, it is indicated with a carry out Coy in the next
column. The half Adder can be built from an XOR gate and an AND gate.

In a multi-bit Adder, C,.: is added or carried in to the next most significant bit. For example, the
carry bit is the output Cyyt of the first column of 1-bit addition and the input C;, to the second
column of addition. However, the half Adder lacks a Cj, input to accept Coy Of the previous
column.

Module | Module I Part-1 Page 7

EC206 COMPUTER ORGANISATION MODULE |

Half
Adder
A B
Cout
S
A B | Cu S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0 1
0001
S=A® B +0101
Cout =AB 0110
Full Adder

A full Adder accepts the carry in Cj, as shown. The figure also shows the output equations for S
and Cout.

c, A B|Cy, S
0 0 0] 0 0
0 0 1 0 1
o 1 o 0o 1
0o 1 1 1 0
1 0 0 0o 1

Full
I
A B 1 1 1 11

Cout C'\iﬂ S=A@B@Cin

A Cou=AB+AC;,+BC;,

Module | Module I Part-1 Page 8

EC206 COMPUTER ORGANISATION MODULE |

Carry Propagate Adder

An N-bit Adder sums two N-bit inputs, A and B, and a carry in Cin to produce an N-bit result S
and a carry out Cout. It is commonly called a carry propagate Adder (CPA) because the carry out
of one bit propagates into the next bit. The symbol for a CPA is shown in Figure 5.4; it is drawn
just like a full Adder except that A, B, and S are busses rather than single bits. Three common
CPA implementations are called ripple-carry Adders, carry-look ahead Adders, and Prefix
Adders.

Ripple-Carry Adder

The simplest way to build an N-bit carry propagate Adder is to chain together N full Adders. The
Cout OF 0ne stage acts as the C;, of the next stage, as shown for 32-bit addition. This is called a
ripple carry Adder. It is a good application of modularity and regularity: the full Adder module is
reused many times to form a larger system. The ripple carry Adder has the disadvantage of being
slow when N is large. S3; depends on Csg, which depends on Cy, Which depends on Csg, and so
forth all the way back to Ci,, as shown. We say that the carry ripples through the carry chain. The
delay of the Adder, t ripple, grows directly with the number of bits, where tea is the delay of a full
Adder.

A B
N N
Cout Ci, "9731 Ef31 "9130 Efso "?‘1 ‘?1 "lqo '?0
. G\ Ve NV VTV Lo,
S I CSO | C29 C1 | CO |
Carry
propagate adder 32-bit ripple-carry adder

Leipple = Ntga

Carry-Look Ahead Adder

The fundamental reason that large ripple-carry Adders are slow is that the carry signals must
propagate through every bit in the Adder. A carry look ahead Adder (CLA) is another type of
carry propagate Adder that solves this problem by dividing the Adder into blocks and providing
circuitry to quickly determine the carry out of a block as soon as the carry in is known. Thus it is
said to look ahead across the blocks rather than waiting to ripple through all the full Adders
inside a block. For example, a 32-bit Adder may be divided into eight 4-bit blocks.

Module | Module I Part-1 Page 9

EC206 COMPUTER ORGANISATION MODULE |

CLAs use generates (G) and propagate (P) signals that describe how a column or block
determines the carry out. The ith column of an Adder is said to generate a carry if it produces a
carry out independent of the carry in. The ith column of an Adder is guaranteed to generate a
carry C; if Aj and B; are both 1. Hence G;, the generate signal for column i, is calculated as
Gi = Ai.Bi. The column is said to propagate a carry if it produces a carry out whenever there is a
carry in. The ith column will propagate a carry in, C;-y, if either A; or B; is 1. Thus, P; = A; + B;.
Using these definitions, we can rewrite the carry logic for a particular column of the Adder. The
ith column of an Adder will generate a carry out C; if it either generates a carry, G;, or propagates
a carry in, Pi.Ci_;. In equation form,

Cg = 1’11585 + (1’1§+B§)C§_1 = Gg + PiCi_l

The generate and propagate definitions extend to multiple-bit blocks. A block is said to generate
a carry if it produces a carry out independent of the carry in to the block. The block is said to
propagate a carry if it produces a carry out whenever there is a carry in to the block. We define
Gi;jand P as generate and propagate signals for blocks spanning columns i through j.

A block generates a carry if the most significant column generates a carry, or if the most
significant column propagates a carry and the previous column generated a carry, and so forth.
For example, the generate logic for a block spanning columns 3 through O is :

G0 = G3+P3(Gy + P2(Gy + P1Gy))

A block propagates a carry if all the columns in the block propagate the carry. For example, the
propagate logic for a block spanning columns 3 through 0 is:

P3:U:P3P2P1PU

Using the block generate and propagate signals, we can quickly compute the carry out of the
block, C;, using the carry in to the block, C;.

Ci = Gij+ PG

Module | Module I Part-1 Page 10

EC206 COMPUTER ORGANISATION MODULE |

B,, A, By, A

831 28 A31 28 82? 24 A2? 24

43' FoF ot
4-bit CLA | C27| a-bit CLA 4-bit CLA | C3 | abitcLA
out Block Block Block Block "'l
31 28 2? 24 ? 4 3:0

A 32-bit carry-look ahead Adder is composed of eight 4-bit blocks. Each block contains a 4-bit
ripple-carry Adder and some look ahead logic to compute the carry out of the block given the
carry in, as shown.

d ™

PR P

out 9 é
p__

_Cin

S

L.

The AND and OR gates needed to compute the single-bit generate and propagate signals, G; and
Pi, from A; and B; are left out for brevity. Again, the carry-look ahead Adder demonstrates

modularity and regularity.

All of the CLA blocks compute the single-bit and block generate and propagate signals
simultaneously. The critical path starts with computing Gy and Gs.o in the first CLA block.

Cin then advances directly to Co, through the AND/OR gate in each block until the last.
Module | Module I Part-1 Page 11

EC206 COMPUTER ORGANISATION MODULE |

For a large Adder, this is much faster than waiting for the carries to ripple through each
consecutive bit of the Adder. Finally, the critical path through the last block contains a short
ripple-carry Adder. Thus, an N-bit Adder divided into k-bit blocks has a delay:

N
lcrLA = lpg +1pg block T (E —1> tAND_OR + Ripa

where tyg is the delay of the individual generate/propagate gates (a single AND or OR gate) to
generate Pi and Gi, tyg biock 1S the delay to find the generate/propagate signals Pi; and Gi; for a
k-bit block, and tanp or is the delay from C;, to Coy: through the final AND/OR logic of the k-bit
CLA block. For N >16, the carry-look ahead Adder is generally much faster than the ripple-carry
Adder. However, the Adder delay still increases linearly with N.

Example 1: RIPPLE-CARRY ADDER AND CARRY-LOOKAHEAD ADDER DELAY

Compare the delays of a 32-bit ripple-carry Adder and a 32-bit carry-look ahead Adder with 4-
bit blocks. Assume that each two-input gate delay is 100 ps and that a full Adder delay is 300 ps.

Sol:

The propagation delay of the 32-bit ripple carry Adder is 32 x 300 ps = 9.6 ns.
The CLA has t,g = 100 ps,

tpg block = 6 % 100 ps = 600 ps, and

tano_or = 2 % 100 ps =200 ps.

The propagation delay of the 32-bit carry-look ahead Adder with 4-bit blocks is :
100 ps+ 600 ps + (32/4 — 1) x 200 ps + (4 x 300 ps)

=3.3ns,

Almost three times faster than the ripple-carry Adder!

Module | Module I Part-1 Page 12

EC206 COMPUTER ORGANISATION MODULE |

Prefix Adder

Early computers used ripple carry Adders, because components were expensive and ripple-carry
Adders used the least hardware. Virtually all modern PCs use Prefix Adders on critical paths,
because transistors are now cheap and speed is of great importance.

Prefix Adders extend the generate and propagate logic of the carry look ahead Adder to perform
addition even faster. They first compute G and P for pairs of columns, then for blocks of 4, then
for blocks of 8, then 16, and so forth until the generate signal for every column is known. The
sums are computed from these generate signals.

In other words, the strategy of a Prefix Adder is to compute the carry in C;-; for each column i as
quickly as possible, then to compute the sum, using

Si = ([L‘@Bi) EB Ci—l

Define column i = -1 to hold Cj,, so G_; = Ci, and P_; = 0. Then C;_; =G;_3. 1 because there will be
a carry out of column i—1 if the block spanning columns i—1 through —1 generates a carry. The
generated carry is either generated in column i—1 or generated in a previous column and
propagated.

Thus, we rewrite Equation as:
Si = (Ai®B;) ®G;1.4

Hence, the main challenge is to rapidly compute all the block generate signals G_1.1, Go..1,
Gi.1, G2.1, . . ., Gno2-1. These signals, along with P_j. 3, Po. 1, P1..1, P2.1, . . ., Pno2.1, are called
Prefixes.

The diagram shows an N= 16-bit Prefix Adder. The Adder begins with a pre-computation to
form P; and G; for each column from A; and B; using AND and OR gates.

It then uses logaN= 4 levels of black cells to form the Prefixes of Gi;and Pi;. A black cell takes
inputs from the upper part of a block spanning bits i:k and from the lower part spanning bits
k—1:j. It combines these parts to form generate and propagate signals for the entire block
spanning bits i: j using the equations:

Gij = Gig + Pi Ge_y

Pl‘:j =Pi:k Pk—'l;;'

Module | Module I Part-1 Page 13

EC206 COMPUTER ORGANISATION MODULE |

15 | 14 (13 | 12 | 11 10

©
[#~]
~
o
[
P
[]
na
-
o
L

" o W W

14:13 12:11 10:

8.7 g:

e

5
6:3]| 53

R
n
R

)
B’
B

"

61|51 |4-1|31

20000800
Legend j m (i)

A;B; PixPia |G.f:x Gi_1y G114 B

| 1L

Pri Gy =

Py Gy ;

Sy

A block spanning bits i:j will generate a carry if the upper part generates a carry or if the upper
part propagates a carry generated in the lower part. The block will propagate a carry if both the
upper and lower parts propagate the carry. Finally, the Prefix Adder computes the sums.

In summary, the Prefix Adder achieves a delay that grows logarithmically rather than linearly
with the number of columns in the Adder. This speedup is significant, especially for Adders with
32 or more bits, but it comes at the expense of more hardware than a simple carry-look ahead
Adder.

Module | Module I Part-1 Page 14

EC206 COMPUTER ORGANISATION MODULE |

The network of black cells is called a Prefix Tree. The general principle of using Prefix trees to
perform computations in time that grows logarithmically with the number of inputs is a powerful
technique.

The critical path for an N-bit Prefix Adder involves the pre-computation of P; and G; followed by
logzN stages of black Prefix cells to obtain all the Prefixes.

Gi.1- 1 then proceeds through the final XOR gate at the bottom to compute S;.

The delay of an N-bit Prefix Adder is:
tpa = tye + 10g; N(tps prefix) + IXOR

where tyg prefix IS the delay of a black Prefix cell.

Example-2 PREFIX ADDER DELAY

Compute the delay of a 32-bit Prefix Adder. Assume that each two-input gate delay is 100 ps.
Sol:

The propagation delay of each black Prefix cell tyy prefix IS 200 ps (i.e., two gate delays).

Thus, the propagation delay of the 32-bit Prefix Adder is:

100 ps + log(32) x 200 ps + 100 ps = 1.2 ns,

which is about three times faster than the carry-look ahead Adder and eight times faster than the
ripple-carry Adder from Example 1.

In practice, the benefits are not quite this great, but Prefix Adders are still much faster than the
others.

Putting It All Together ...

This section introduced the half Adder, full Adder, and three types of carry propagate Adders:
ripple-carry, carry-look ahead, and Prefix Adders. Faster Adders require more hardware and
therefore are more expensive and power-hungry. These trade-offs must be considered when
choosing an appropriate Adder for a design.

Module | Module I Part-1 Page 15

EC206 COMPUTER ORGANISATION MODULE |

Subtraction

Adders can add positive and negative numbers using two’s complement number representation.
Subtraction is almost as easy: flip the sign of the second number, then add. Flipping the sign of a
two’s complement number is done by inverting the bits and adding 1.

To compute Y = A — B, first create the two’s complement of B:

Invert the bits of B to obtain B and add 1 to get -B=B + 1.

Add this quantityto Atoget Y=A+B+1=A—-B.

This sum can be performed with a single CPA by adding A + B with Cj, = 1.

The symbol for a Subtractor and the underlying hardware for performing Y = A — B are shown.

Module | Module I Part-1 Page 16

EC206

COMPUTER ORGANISATION MODULE |

e Lo ey nunbes e é’“r“hl BE '}: ‘

Cor: chm’}o(s v -

e AL 9{%-!*.1(‘ oC le‘i;

_Module |

ﬁ(omfa\cajor' oL--Jf‘(m|‘n¢g, h\\a-J;f\u’

Hhan T otfer
B (anpacae e (eves heo N-Lif Firady ”“Mb@r‘s)ﬁf and B -
.Fti\ [2L

Thave_ae Lovo Garman 'H\UJ
Ei\mh‘j‘j Cw_s!.:‘csfﬂ'!?-‘(’t.' -

o [V
E?\ iii)[)—a_,:L:Df N

of- L/.;am-}-’arﬁ'hs '

gy _
EQ'MI by J
C“l%@_k‘l_ e o
ﬁ'bgﬂﬂ;?mw bo -)D .
J (b> bﬁmh}fw

Ao eﬂ{«ﬂmj ’ﬁmfﬂﬂ’*%" F@CLJI% a 51%1.«__, cnh‘j’ﬂ +o f'ncl\?d-é» ahafher
A is apl 4o 8 (A==8) Theim leabihne fis b chocks Fo fnd
I ctpodie bils o D wd B o equel sLsing XNOR. gnles
The (‘UmEJCé o Gﬁ.lwd ,'lllt‘-“ ":“f‘}f*t Q{T@rmolﬂb b‘g AT @Ywa J .

@ |9 6¢ Cbmlfmjmf"; L
‘\Lfmznt&hrﬂm%r _F(bcLl(e,S ore o enofe w‘}f’ﬁ’s +o .ncllcadt
“the Glative Valos o}ﬁ A and B -

A N Mﬂﬂﬂ!’i\’é@ CU“-Fﬁr}S..—\ ;SQL)‘.& bj
@mf‘mrb A-B amd [oalmh:) at The_
Sign (M55)bt of @t s Shown -
M.ﬂf‘fu”@s M{)ﬂ"}l\f‘t (,‘,e ,Sxnbtis D
Fren A5 lossFhan B 4
Flie A e 5ader Har 0Cequalfe £ -

A<p
N'bJ ﬁ‘agm‘}'“ic M’f&mLf

Module | Part-2 Page 1

EC206 COMPUTER ORGANISATION MODULE |

Acdirehc, Lyic- Uk (AL0) -

: wathumahial an d
- bnes r\\lﬁmm‘) ﬁ'f
 Detashe Loy Uit (AL Gom i .
fz;w\ orat a;nb #siglemf o po ﬁ'ﬁ%’i—‘s} larytro) S15M Jes>
TN ALV a((e?% w-bit mp}; and 6t s | 15 A
rhg\, s\ea ﬂa; which Rn(,h«\ +o PeATo ™
A B 2

ot

Module | Module | Part-2 Page 2

EC206 COMPUTER ORGANISATION MODULE |

The ALU consishs of an N-BF Addec, N Awo-inpl AND and CRGuks,
T+ s én lnecker and & n’\uH',JﬂEm((Moxr) 4o 0’7})0"0\“3 jovert
inpt B ahe e K Conjn'bl 5‘.9,@’ s asso.r}gel,

A 401 Mox choose, fe desind funedion brsed en Fhe Fip Gentro) Sigrg k.
The acibnehe 0nd b?'“’ blacks 1n fte ALy opecate on A and BB
B s eittac B oc B, dipending on Fy .

i Fup= 00 ,fha olp Mux chooses A AND B

.J’, FI'-O =01, “The o]p Muy. Chwoses A oR B

b Fug=10,Te olp MU¥ Chwses addiion. or sbfmchi,,

Nole Hat T i< e Catcy-in fofle Alder;as well a2 el

b il 201 Mok
Also Ln‘r&’i”mé Zt = -8B 'n 2‘9 G lemac g -

i}'F' =0, e ile HuX ¢ hooses A~+D —
.‘?. FZZ_ z 4 ’ _,“{ ,E Hd)(éw% A - 5 (P\L\) fCN\fv,‘V) A‘i".g‘ﬂ)
-)

i} B = N, e ALY porfocms Set Less Than CEp) Ofpe o) -

When A<B Y= i Yicseho L if A is less Hhan B
Fke =0

511 e ymcorméhj bomputry S= A-B

\g— S is ﬂ?ﬁq‘m/c G-C-,’W\Q Sign bt is i_)) A<pB

The Zem erderd unid ?rocfu(as an N-bLi} olp by [m(a-/ma.l’f/\ﬂ)
it 1- bit inpok- with, 0s 1h the. s + 5;5,\',#@0;_ S G
The S bk of S (™)t 0 nad bty o
Sorre AUs Pea duce exdea Sﬁmls called _Flgﬁ_
ocexampl. , Oveeflos Plg Zero flag <fc

Module | Module | Part-2 Page 3

EC206 COMPUTER ORGANISATION MODULE |

E,@m‘?’e_.- SET LESS THAN
Cofigre o 32-bit ALU foc Tk SLT opeation. - Leb A= 257 and B232
Sho he. Lonta] ‘;‘"\jm"p wnd aﬁfut i
Sl
-Sm((ﬁ A<B, e valoe ﬂf Yis 1
For SLT | Fpop = 11

With, F, = I7““\a addec umt is Cm%brac‘ as %Hrador :

Ok € = 3532 = 7,
A 10 .
+7 - O OOHrOl”
lo : |
‘7u) = 1 11 |00t (2; (,.y-\r\e«ud' >
Whe Fo = 1, odpt Mg Sefs 7= 8 =1

Zew txkend nit po dutess 5
i 0
Y=l 00 .- 0000

Module | Module | Part-2 Page 4

EC206 COMPUTER ORGANISATION

MODULE |

ShiMecs and_folﬂ’&\"i

5)51",[‘#(‘ C‘ﬂd i\)h""’(S move L!‘} Clo(l'(.“cf’a”
d pl(.lfl "ON(’(So/* 2. ’ , |
\;{VS‘\[’JQ)((SL"m') A .[."I\O\(D Numbes ,C/J o ('ﬁh}' 5 o 5}’6(;}35&
Numbesc O)[}‘bS‘)lbr\ﬁ
Tt il
| Lc-"iu\’ ey Fle T~

Eﬁf‘d& Loy numbec Ao fhe Jebb (Lst) or oshk (LR D

oand _&ls emfv,lt) :~)’u’t) wodk Os - |

Example: 11001 LsR 2 = 00110

I looy LSL 2 = 00100

2. /—\r;mgg@gef_\ = |
mz e 2acme % 4 |094~m|5y.3€;cr, bubon 4 N 5%:’#"5) Fv“s
Tre MB wifh a Py of e ‘old mab-

—H'VS L\S(Jeﬁ-‘ ‘fv(NH},| ‘".\3 “qé (J,\/,Q);(\ﬁ QIEQ(__’ numb&(s 5
Actheehc shifF left (/B‘L_) Ts The ame #% |SL -
Eample: 11 00| ASR 2 = 11110
ool AL 2 = oo)oO
S ﬁo}q%ﬂ !~

3 cmcl eF/;(J;vt’) m"“?t/j or”

Colnter, nember m drale 2ch thak e i’fﬁj ;;;Q}; M}Q}Ld

corth M@:{% The ofhaced -
Exangle © 11001 ROR 2 = 0I11D
oot Ro 2 = ol Nl

_Ti «\;-w Sﬁsi;]l/er% be bylb fors N, N2t Hulfiple<ers -

ifp s shifed by 0 ko N-1 Lk - demdro .

of the log,N <)} D“i& ,(SMM+J=>'> > F"”‘lv"g e vale_
_HLWM <527 and =27 ndiea)e =1, Lo JASR
=Mako holly 24t Shiy amound, bt sl fled

OM\/ wceives e
) ¥Le| inpd ;A =h B
WMN S‘V\ﬂnl,.‘o:oo o _’@ bD O += 2 biis -

Module | Module | Part-2

Page 5

EC206 COMPUTER ORGANISATION

MODULE |

4-.-5]{?}_—;:‘9«:{ : \ogmd SL)P_F}' ff)%
Efﬁ_ e Rdle s

o0 mullplpahm -
A |e?‘r 5!\]1[‘! & -ﬂrecm | case /F/_%_« . N
A left shi FF lﬂj N its dea les TRe MMEeP Y 2.

\ogica | shfHIFh

Atk SNE bt

s

0 i O 000
Erample s OOOO! \ é*"/“éf - z 17
%Mm#ﬂ%\ \m\:o@m; 8Ly
8}9{%9 i W lk 4 e '\mPlvwm
"’o Y “\rfp isu 2 f",\m‘t e Shft oo
l O% LeL 3 VAl) "11,‘) ok
?Miz_’oz‘o" O LsL 4L 1);;3104 4 o
'3 B % 2% = 48,

Refhechz. rs%&\\ﬂ_ by N bils divides numbed Ly i
Crample *= 11100, >>>72 = 1)1 Iy

> _‘L}“Lo/?* :_}'lo (5('"‘““’19

Module | Part-2

Module |

Page 6

EC206 COMPUTER ORGANISATION MODULE |

Ng”.r l 1< .«‘}uv\, .

lov nw!l,f.-).u\‘uvxl ()rc(q“iwv ofuf_@'!jne 4—)“‘0‘(3 qub()(g’ fc\(‘)'kﬁ-l moLQ[}
e fared by gy (ANDis) . Ging e bik- of i mulkiphicr warth,

The e'ﬂ'”’c‘ﬂl_']’,hq_'f‘) “Thaafhe shfted fac fia | o e o
‘l’b {L(M e E“’BQJL BT 5 }T % = &_
v 8&(\0\1\‘ y Qv NN M‘-“"]"\Qf mu‘lf.vy'.'as oo N-bi} Nmbors ﬂr\cL
r""CLﬂ(cf) & 2N-hKi @sall .”\(]"o\(}'ml ,YO(‘.IVC“S (A Lvmomj MJIHF\IZAHW
ace e e ﬁg\kﬂ&qq& Al 0%

HJM}»I;M-M\ of 1-bit biraay numecs ie Sae as Fhe AND Opuhin
» so AXD é)m"c; qec Uscc(fo ﬁxm Jhro. ta(’}ia.‘ @d} -
Eﬁim}‘)‘c: fQLbN _5;747‘; on ﬁare(\)s‘% L,}\WD Tng)bA'

5, = 018) c_mu“.'f!icmd

7= 01T o pdhpled
Z- T ool Packal frodads
o1 0l
o1ol 4
O ?,_O_,O P
T p'ipooll odddeof P
— with, N-bitopecnds,

Ao
As5ie /;' gl = Harare N M&\rw&m&
B B P % adN gy o FoiE

Thh Pk AR Moo Adlers
Ay sy Ay P L Tobli N® 2. Apane
b, by A A (=) 20 O
ﬁbb, Alb Al?’) Pobs e === D HDDEK;-
R

M = e O WP = o= e~ T
Euck pickal poded is a single mddigher bit (3,5 Bs8) AND Ho_
lhiant B (Ao Pe o> 22D The fuckial prodi of fist o 7o Bo AP (A3, A2, A o)
s P % a\&u‘io A\F‘kd Stond PP) B, AND(A;,Az A()Ao)- o
Coafve A fhe- o} 7P A €3 Aup (s A2 hryPoy. (16 ANDGuis+ 12, p00E5)
APES wit_ e ded Lo _om Fhe_ CottEsprondg Vol of e s -

Module | Module | Part-2 Page 7

EC206

COMPUTER ORGANISATION

MODULE |

[——

HARDWARE FOR FOUR-BIT PARALLEL MULTIPLICATION

Ao

A

Az

A3z

/

J— i
|

O
»—DE

—

g ftt

Module | Part-2

Po

P

P>

o

o

o

o

o

Page 8

EC206 COMPUTER ORGANISATION MODULE |

Division

Binary division can be performed using the following algorithm for N-bit unsigned numbers in
the range [0, 2"-1]:

R'=10
for i=N=1to0
R={R << 1, Ay}

D=R-B

ifD<0then Q;=0,R= // R<B

else Q;=1, R"=D // R>B
R=R’

The partial remainder R is initialized to 0. The most significant bit of the dividend A then
becomes the least significant bit of R. The divisor B is repeatedly subtracted from this partial
remainder to determine whether it fits. If the difference D is negative (i.e., the sign bit of D is 1),
then the quotient bit Qi is 0 and the difference is discarded. Otherwise, Qi is 1, and the partial
remainder is updated to be the difference. In any event, the partial remainder is then doubled
(left-shifted by one column), the next most significant bit of A becomes the least significant bit
of R, and the process repeats. The result satisfies:

A R

A schematic of a 4-bit Array Divider is shown in the figure. The divider computes A/B and
produces a quotient Q and a remainder R. The legend shows the symbol and schematic for each
block in the array divider. The signal N indicates whether R — B is negative. It is obtained from
the D output of the leftmost block in the row, which is the sign of the difference.

The delay of an N-bit array divider increases proportionally to N? because the carry must ripple
through all N stages in a row before the sign is determined and the multiplexer selects R or D.
This repeats for all N rows. Division is a slow and expensive operation in hardware and therefore
should be used as infrequently as possible.

Module | Module | Part-2 Page 9

EC206 COMPUTER ORGANISATION MODULE |

Four-bit Array Divider bit
0 B, 0 B, 0 B, A; B
N R N O

— — -1

Module | Module | Part-2 Page 10

EC206 COMPUTER ORGANISATION

Red-Foimk- Nomber £ Jers : -

MODULE |

‘H ‘Rf,{_]—[?o{ﬂl‘ ﬂo“cl%bfv "\177 an Sy ?l)'tcl. L}H\D«rj)70|n‘}' LC}N(’Q/\ —H\Q. Iq’}%ef‘ﬂtﬁl
fodivo bk

Bample 11 . ok

| = —
olp-1100, =2t2+2+42 = 675,

S ﬁxal-ro.v# Ao Gin e eher Sian, OGPk no;zx}’fm o
LsGoraflonink b, -

bompb 12) g
+2.375 = 0010.0110

237 = 1010.0110 (S‘»smaqdmgm%ie,)
1 1011010 (25 Gmplmet

Mﬂrﬂm%u
chnfu+c Di2s ™+ = 9‘6225_ US{!‘S ﬁxenl —ro.'n‘}‘ N beys

0-75= 0000. 1) O
| +0bas= Dooo 101 OJ+

(i

rixd ‘I_’O\'* umlbser s

< g[e,g:re_ (o'vvv\af\L) vied
y o t\}(‘ P 1S r\(-k\
- 0~£25)3 L1 =01 o (25&:0\[’&,«147‘) _ f*\.{akuxh k (M o
O_—‘|25 @OO O‘ 0 ~ r«-&ﬁ»bf\ 'lDJ' ~o A~
’ éi'bwff e 00.0 '::> U.IZ&,O

\o\r{x rAnge -

F'oah%~fo;% Number Sudens - -

ﬂoﬁr\b—fo;n# Nambers hare & Sicv Mand;
= & Sigry Mantissa (M) 5 Ba,, (B
E?\I’oanr () o6 shown belows . ; e s
™ ¢ »E

For Cramgle , umber 41415 it sGehRe nolhin foe 4100 -
j—’} ‘\aqq.t‘“}:‘[»'l) =10, E= 3 -

Flc»&pr\c)—fci'\‘"‘ runl?efb a-fc JDWw_Z &)ﬂL’\J bu\o\:v ma(r,j% .

B 32-bif FPN by 1 sz b

Sn bit (ML), 8 Cxponad-bits

- 43 MMH‘.%\, b';+5' : } { Fomn ’. - W‘CL‘
-Modulel Module | Part-2

Page 11

EC206 COMPUTER ORGANISATION MODULE |

32-bit Ffm*mb— forn) Numbes

Exampl!
. 22-L} FPN

szj\"é‘x*‘t 228, & &

'1/-“.— . - .
—E‘k]‘:lf (mﬂA '22‘\?'0 \n-'o LNM\?U =10 ' 00‘002_

i
= 111001 4 2 (Noe

Sambh 16 0 (Fosihie)
X :
Effvet is 70— 0000 OV N (&-bitsD

H.Oxnth(,\, 'S NRMANING 23 Lif 11100 0

[&]
322 = .
L iTpe o pesu seomeee] AN g
s Eﬂromn") Mantissa (22> Vis_'i"_-ﬂ-‘

g
)

Intre. bfmﬂj PPN, The lsF L:J‘c-} Mandissa 7o afuaj 1 and s0
neo,é no{'.‘x__ S’lD(eO(i \!5 Co\”cd TRo pmf'fq{- /64(1]4}\5 ong_ *
ke modified FPN SRS impliei lea\(i[ra ore (hidden. e 7 nct

Inchded i He 22-Lt Mantiga 7%(0}3,@(,% el |
b"’Z ae Q’)(D(ml_ -Th.-s P(QQS Uf Q)“fm\ !);" 7%: :f(e _R‘ '1&4?\ 971,(, My

3t 3o b 2 ° 554
[c Joooo 0111 [110 0100 ©o0o covo ewwo o | ,ﬂ,;;itﬂl\z]—
K EA + s 22 L B 2

Then one ‘QM‘ mocl{ﬁ'cm‘n%m 'S mﬁtic To Q—?“}?or\a(ﬂL #e H : TN_ exfawﬂ'
Need o @puseat Lotk fwi%‘vc» wnd ne?\%\re,. &;«quh- Tode so, use

& Biased Exponadt, ot by adding a ot bins of 127 Hofra_
Uﬁyf‘q\ -Q*FoMn"-
. So) fporent 7 beconss biased exponas? 74127 134:= lovoolio,

* 330 2322 o
[éqiug_o o110 [110 0100 ©ovo vooo cooo smo| |EEE 754
Akt Feactun, (23 -bik Fhaire foint W
: “‘f’m ‘ W i) o1n
SRk H08 Nofaion .

14y e oy ;
forent-is — bared cgporant 1= 417 =23 = o111 101 5

Module | Module | Part-2 Page 12

EC206 COMPUTER ORGANISATION MODULE |

Special Cases: 0, o, and NaN

The IEEE floating-point standard has special cases to represent numbers such as zero, infinity,
and illegal results. For example, representing the number zero is problematic in floating-point
notation because of the implicit leading one. Special codes with exponents of all 0’s or all I’s are
reserved for these special cases. Table shows the floating-point representations of 0, +oo, and
NaN. As with sign/magnitude numbers, floating- point has both positive and negative 0. NaN is

used for numbers that don’t exist, such as V1 or loga(=35).

Number Sign Exponent Fraction
0 X 00000000 00000000000000000000000
0o 0 11111111 00000000000000000000000
—0oo 1 11111111 00000000000000000000000
NaN X 11111111 Non-zero

Single- and Double-Precision Formats

So far, we have examined 32-bit floating-point numbers. This format is also called single-
precision, single, or float. The IEEE 754 standard also defines 64-bit double-precision numbers
(also called doubles) that provide greater precision and greater range. Table shows the number of
bits used for the fields in each format.

Excluding the special cases mentioned earlier, normal single-precision numbers span a range of
+1.175494 x 10 % to +3.402824 x 10%,

They have a precision of about seven significant decimal digits (because 2 %* ~ 107). Similarly,

normal double-precision numbers span a range of +2.22507385850720 x 10°%® to
+1.79769313486232 x 10° and have a precision of about 15 significant decimal digits.

Sign Bits Exponent Bits Fraction Bits

single 32 1 8 23
double 64 1 11 52

Module | Module | Part-2 Page 13

EC206 COMPUTER ORGANISATION MODULE |

Rounding

Arithmetic results that fall outside of the available precision must round to a neighboring
number. The rounding modes are: round down, round up, round toward zero, and round to
nearest. The default rounding mode is round to nearest. In the round to nearest mode, if two
numbers are equally near, the one with a 0 in the least significant position of the fraction is
chosen.

Recall that a number overflows when its magnitude is too large to be represented. Likewise, a
number underflows when it is too tiny to be represented. In round to nearest mode, overflows are
rounded up to +oo and underflows are rounded down to 0.

Floating-Point Addition

Addition with floating-point numbers is not as simple as addition with two’s complement
numbers. The steps for adding floating-point numbers with the same sign are as follows:

. Extract exponent and fraction bits.

. Prepend leading 1 to form the mantissa.

. Compare exponents.

. Shift smaller mantissa if necessary.

. Add mantissas.

. Normalize mantissa and adjust exponent if necessary.

. Round result.

. Assemble exponent and fraction back into floating-point number.

Example shows the floating-point addition of 7.875 (1.11111 x 2%) and 0.1875 (1.1 x 23).
The result is 8.0625 (1.0000001 x 23).

After the fraction and exponent bits are extracted and the implicit leading 1 is prepended in steps

1 and 2, the exponents are compared by subtracting the smaller exponent from the larger
exponent. The result is the number of bits by which the smaller number is shifted to the right to
align the implied binary point (i.e., to make the exponents equal) in step 4. The aligned numbers
are added. Because the sum has a mantissa that is greater than or equal to 2.0, the result is
normalized by shifting it to the right one bit and incrementing the exponent. In this example, the
result is exact, so no rounding is necessary. The result is stored in floating-point notation by
removing the implicit leading one of the mantissa and prepending the sign bit.

CO~NO TR~ WN B

Module | Module | Part-2 Page 14

EC206 COMPUTER ORGANISATION MODULE |

Floating-point numbers

| 0| 10000001 | 111 1100 0000 0000 0000 0000 |

lo| 01111100 | 100 0000 0000 000D 0000 0000 |
Exponent Fractlon

[10000001 | [111 1100 0000 0000 0000 000 |

Step1 [o1111100]| [1000000 0000 000D 0000 0000 |

[10000001 | [1.111 1100 0000 0000 0000 0000 |
Step 2 (01111100 | [1.100 0000 0000 OO0 GO0 0000 |

(10000001 | {1.111 1100 0000 0000 0000 0000 |

Stpd _ (01111100 | (1.100 0000 0000 0000 G000 0000 |
101 (shift amount)
[10000001 | [1.111 1100 0000 0000 0000 0000 |
Stepd (10000001 | {0.000 0110 0000 0000 0000 0C00| 00000
[10000001 | {1.111 1100 0000 0000 0000 0000 |
Step 5

(10000001 | (0.000 0110 0000 0000 G000 0000 |
10.000 0010 0000 0000 0000 0000

Step 6 10000001 10.000 0010 Q000 G000 0000 0000 >=1
+

p
[10000010 | {1.000 0001 0000 0000 0000 0000

Step 7 {No rounding necessary)

Some interesting facts...

Floating-point cannot represent some numbers exactly, like 1.7. However, when you type 1.7
into your calculator, you see exactly 1.7, not 1.69999. . . . To handle this, some applications,
such as calculators and financial software, use binary coded decimal (BCD) numbers or formats
with a base 10 exponent. BCD numbers encode each decimal digit using four bits with a range of
0 to 9. For example, the BCD fixed-point notation of 1.7 with four integer bits and four fraction
bits would be 0001.0111. Of course, nothing is free. The cost is increased complexity in
arithmetic hardware and wasted encodings (A-F encodings are not used), and thus decreased
performance. So for computer-intensive applications, floating-point is much faster.

Floating-point arithmetic is usually done in hardware to make it fast. This hardware, called the
floating-point unit (FPU), is typically distinct from the central processing unit (CPU). The
infamous floating-point division (FDIV) bug in the Pentium FPU cost Intel $475 million to recall
and replace defective chips. The bug occurred simply because a lookup table was not loaded
correctly!

Module | Module | Part-2 Page 15

A

ECQOé COmiu-J-ﬂ(' Orjaf\;zﬂ’)lﬂf\, 28 NO&U\'Q I ECE ‘%M’%
ﬂQl\i '}ec‘)u(e_ e

'qua, (o Vs L\#ec“}u(e_ O_f the &DMJJU‘)‘&’ 'S ’ﬁff@m}tﬁl LJ 'H\L ‘-’\Z}ﬂf&[fam é%
And O]%(mc] \cm'}fmﬁ Wity o @Ssks and Memoc y P

1% —H‘Q. ff%mmm’j
View of Yo Comprec

MO“D &}PFem,\-} cchifecdwes Crich Suchoas T 32 ;%,%C ind Bie NC

Tha Complede votahlacy of the nbudins, of o meJ}er s iz Ioghackin S
Q)m)a,}ef 'ir\b}rvo}fmb inC \u&L GM 3 SuLJmuL)

omel jumf Ou\d So orv -

€ Theyy ndicade bot th“’*&&(f_\fﬂv to ferporm andhe Operndats use -

e 0\7€fo\néb N\&\j (ovre. ’?NW\ M@mo@ X Q\m

Kﬁyé‘ké o(5}""’\
%\(\%‘\maﬂm ‘\lrée\?) A5 (r\&K (_o\)r Q& \aj S M vsed .

E\/Q,(j Qﬂj\\‘ﬁd\’@l\ﬂ’; IE (Z V1AV, \0\(\%\/0.5_& o\,)\.’u‘\ié)h)‘(’fr\a«)l_\) X
E\N\AJ %gmlj S ‘(\'}wc"ﬂ)r\& M0 1y The ’@’ﬂn ef' L,}}; :

Howmr) ;\or“ﬁ\m,@%e, 6’)905@ Joj ?@5mmn\er (Humf\,s) S %ml_o} X&
Wﬁ@ S vsed Ao (&f@ﬁ/ﬂt fn%’}rv(jjﬂn,g and fhe F;ffjrqry
Tt 5 calld A%UJ (arguage , ,

Pesemblyy largumge ic Tho human-ceadabs RpiGgeaahig o}
the GQN\]?\)J{PE f\O\)f e lﬁ\f‘g\/ﬂ%& EAcl\) W%emk(a 10\(\5\)&%,@, fM+WO}|M
Sfecifies, befh e, opeatindo reefhary wndta. Grecngh, on, whizh
o epeade

‘:}_\7_5 Acchite e ‘\(‘@h\‘c‘}%@ afe 50(\9;4012/&4. :p'o(

A Li s
\Sjﬂkan*b Q&il‘ﬁ %’_}'@r&)W’j U‘"CI- Gxﬁv\ : J [WB B
Fsembly | i

g loding fum o fogm b Gonverted
o W\L‘\N/\mgwge, of MJTMQ, acchite due VG, Pg@,ﬁblw. ,
HM(L A%em\?\) \6\/‘9\2630_,15 N\A(Jr\if\e..(ﬂrdxi c}w&) clej?érr |
O e ol hand High. Leve| Lag

sses suhan C,CH
e mc&\i:\c, ir\&afm&q” Gmi, USe_ |AMF@

T}\e, an’o]L }ngjmz@'ima e Eaf‘}'fmoﬂ ySo 'ﬁ\a\‘l?ml\o\fb‘wﬁfe. f\u_dec'

Inghoctions * -

B e N p"ycm'}fo-f\, Ce:r"\fxfké FEF7OO(M S Adﬁ‘-:‘}‘rw
) o MO

M%r a&c\\\f\‘j Gaciabks b and ¢ and axifine, g lt 4o o

N(‘;h’/ COQ\C : : ’ ‘
in ko Nigh leel largmge- 1:e C and in MIFS assembly langiaze
C‘“Of\%u’ﬂ-ﬁlﬁ_—; C‘ocLz._- f‘(”;.é H%%L‘j C\:(i&_
8 el R add a,b,c

E‘C\mg‘ci— A (@e)’e«* -pm’ Sdlo{"mc}\fof\, i

C—lo\gﬂ% tade W ®
A= b—-zii Sb X B)C

The ficst ra\mL of tre M—QMLB r"ng‘}rvc%bf\-’ m&iarsﬁs ie called
e mnemonic. and ind/cafes whob Rt ffbfeqﬁorm,'_ﬂ\g oﬁa&f.y\
= PCP)CD{M on b and C?“‘g‘”(@" %045) and—The (\@SUM' 1S

—

heiffun Fo oo, The chetirads o, Operand -
Eycqnqufz 3L Mo Ccrnf[@(a;c!?_ and uce o")f— CO’Y)MU)E

C-langusse cde Miprs Asse bl Gde
A=btc-d ; /7/Single line Groment bt cod e ¢
/% mJHiple i Add o, b5 £ #= a=bt b
%an‘} */

The Ag&embb [mns Pre@mn (éf,yv\fro} ﬁ,'_k’?ﬂdp voaiable €, =
Shre fre 1 st dived: sife. sk

Rﬁc-lu(eé J(\f_f,’} (UC7L?°L>r\/ %—}‘ QMJF\J}Q{‘ (’?)SC.) e
The. MifS [nsFnetion, St haos 0(75 Simple.> @nmm)b uGed)ﬂs}wdfwu,.

1o d@(.o&,"ﬂ‘e_ \(\ﬁ'}'\(‘}ﬂfb ané ‘I'E W'Cmf)cjb@r\ k:_é“m{c_)fmq’ﬂ qqdﬁsl. :
\ﬂLDmJ’e, Oj%xv\%‘mb) less @mom) ace Wq@m\d ag;— Z LSt
oo e T

‘j% ek, per me’ﬁrer (CRey, ' |

ﬁ‘-dﬂ\ C :
h Mf% it AL C\)fn\”lﬁﬁ |'A$1me%"oﬂs) Such ag, 5 Inte) I14-39
MC’, C lgc R(-% 7\6, -IA _3 W ¢ Ul
: o e 2 dc'Pr@ 0] S'\rms mMoVe m%&m That
B s e e
““‘ RIS Sevim| < mr\e, logde fods 1n o Riec 'mMLu‘n :
Ao Q3¢ C\(«"d\\‘*vc’\\xag howe. wone ir‘%}rm(ﬁ\m} ,H?Qa’\\j y 255 ,un\"&—e_e
o~ ‘K\SC/ G\\Jﬂ\ ju&* Gﬂ- Si"‘\Y\c, i@;lf(\l(:‘id\/)' }
aJlf)-ﬂ\“— Cog- 05:‘1M\7\9N\Dq)ﬂ‘f\j G““‘\]’LOV\ if\&)rmd’\'ef\o gl S0 C\SC NCL\F\(C’}WQ_, |
'S otded hoedege oand Ol head ol clons dane e Sienpla. ine Ty |
A RIS C\ft}\ﬂfec%v«\e ONNTINToN e NCAO\O\FL (&mﬂ(m"‘\j o Fha_ |
‘ ?\e(o/m% \”S%M}w‘\w\ co&r% by \Cczf'ir\b The st ol Tnadacks g, Sygy !
%(@M\mib) A\ \r\g}}\d{u\\g’*‘ b\s\h\, GA\" &M\')\CN\%’}NC‘}{UV\,S ‘\QD_A% ‘06 j@ﬁ-
i«l,\-‘d\;f) _@ﬁﬂr_ﬁ +> e,r\ca&z—’ff\q, °J79(75\’\{F0¥\: = S]ée‘)
Bt on lethodin b R 26 fdrciiny wold nact "ﬁfgé-‘-?ilg
% enodicy, Pec s chin
N (1S machire) atthorh e Complog sy, e Ued el
Vif\'pj adl ovechead fo all KN\?;)LNL%“%){V@/\ The Simel

T Z oneg .
Upecands - Registecs MerrmrMi -

Ary inedevchin opecites ene Opecands Tab g be o MLMONY 5 (25 cfeg
OC Corglonyk, wilfin. The | o T, H’SC'P'
MPS 15 o Bt o(c\r\‘l%egrufe,)0172/('0("[(‘5 on 32-Lif oPesanls -

Ofecants shed 1 @ik o e Gyl ove. acomed qickl [
’ﬂ\oj ho\cl, O"\‘D 0\5(“(\“ Q'Y\DUUJr Gj: d‘*’\ '

Al fivel 32e. b mg ke ac s o, memor) swhich s [&(6@ b/fSim_w

%Cj\ﬁ}w_g: &
MFS ochfeche. uses 22 cegishes , alled Vegister seb o deyche Bl

Nare.
$ak
$v0-$v]
$a0- $a3
$-{,D-$(:7
30 ~$ 97
P48 -9
% $kO -$k!
$9r
% s¥
$ i
e
M@moz‘j .

Mmo{ﬂ !’\ﬂﬂ; rf\Mj Clm[ax ‘ocq
it tokes lmef E\me, W

merory s lacse and dlows S Gommen
Mifs odchfectue vses 32-bik
MIPs uses o byto-addvessabl
has i Uniope addeesy
e Bz-b'!\rwo(A oddioss and 32-bit bl \fa\‘luy, alt eﬂf@ss@l
He;(La\%{ﬁnls A M\"HM Wrﬁ'\ ‘)Lf\e, ffe_P;; 0x~

orple , dofn OKF2AIACOT pasents, o 3.1
I e Horony Mep indiale [nam 4
H‘@L memon) Ald2z0s, [DM(AS b '}bf |

Capacily of Memo(y s M- 005 —of - addzganh ko fmﬁ’m(9k

for e

5
a5 »5'2' ‘Tﬂ‘ﬁf,('fs ' [Mf't\. r("fj ;[,J-(‘r‘)‘0!& A M rvye
9y from 0 o 3.
Numbe Vee
0 e Conghnf valve 0
| Whern blor Tom foar R
<=3 f-‘w Hon tucn Valve...
49 Pection acgumentz
-1 ’,c‘.,-;7)‘Iu(&\(\—‘) \ﬂ’\flb\b,%
lb-23 Soaved VaCiab| es,
24 Q5 ten, pOtAly VAL
26-2 i OVMM, /(\ty) 5)&'}(1‘\0 (03) Mg(ﬂ\f"%
=3 ‘3;‘%[.:6\‘)”Of'h)l(lf
2 -‘-ﬁf}ack ‘)’»'orhvl(f'
30 AL Poingtr
3 Funchions b add ress
5

Hong Compad fo @gifer fib s BF a(ceazana,

heess e gt file is Srvall xnd

\J veed Vox\"mb\eb ANC ‘(cr%'m %ﬁb?_rj

. menocy sddesses and 32-Lif duda Guocds .
menoty, fab i, eqh Byfe in menor

el

f Of’fmnci N M -
M% fpwsacds IDDHW) and

3 1) u;.
T-hpe inshchns have o G-t SURO [0 5 L Hok has o be _

-'\N l \" g‘\t\ \‘Wi\}\’

g adls & Vb-bioffid 4= & 5L @giskolend.

‘h\ < \(\n\\ Q L A- l7 “ D
o 3 (v ¥ (= NoW) =
Y X lba\Lw R, n\n\ \\\u\\»,) \l\i \)\ \ rer \'\p‘ p g— e :

§ \d A
\\\ ol !\’\ \‘ N \\ﬁ\CAu*C‘\) \[\L U“l)ﬂ }\()\\p _51‘\6; [0(__
5 *\ £ > k|\l,\~4 an b\)l\ ‘Lﬁ'*’!\fuo.\. ‘(\) k/

\N N-bd f\u G \In\\n¥ T\un\ R 1S 5\"‘”\ Q'*“?r‘é“c] +o on M- l’+ i (M7N)
by Copayindy e Senbd (b)) of Hhe N-bik Aumber \’\er all J’b‘i{

QPpRe le:_ of '{1‘\:_. i s b\ nam bee
Son -erkndiyy & 2% St 4 \mant number does nok- dﬂ% I ‘@ ve
N;J Mipg \(\L,‘H\:\Ly,(\&, 5‘<f\ Q"ﬁ*"‘& ’W\L !‘Y\"Y\CAE\;G_.

Fox \N'\nw\zl “C\AL\L\) Rnd sw do S\5mg*k_d ‘Fb_gurfo(‘-l: Lein P@\%V&r

and tege ahve. oed ales -
Rﬂ r\k tel &
f ho &0 ex@etion dotris vule v s dro L E?/(ée\\ Inghacting,

Landt)Oﬁ) Xoce) Flo\(c, O.> in The Sfpes }\&lp‘mgié-cq“s;{
»\s_m SxRvEON, Yorther Fran Sign e?&‘k(\?y\o'\ '

E‘&—\ r_\lr L?, <c A&. V

i $31, 1 Kw i

by 3&{))$53 &
Lo #kz;:’*@o) Bb"((%

{
oA ey

| L\‘*E\
Clks sLib Shib s

¢

ep s ~L fm,.,
— — G v |
O
\oowoo 1000 [[10000, | 2= 2090 9900 S10) (p) 4y et
< o = : A
ioo\ooo o011 01000 (ti] e

Lt vy oled

. {22 G 2

FFE e (oo

7

Fevdo _Ditect Addessing. -
Q(\/"_______C\Cicl(p/% K i j(“'Fm“l Afhe "f\bl’(uﬂ'hd'\)

.

i gy P |
el jal, 16eAlly wadd vce direpaih ‘
Ul ML CE LA se l((’('J[ade \

. ZoohT Lm,} *o\r{)el’ addioss CWA)) o indicafe The 'hb)f%lwbm

The

9?(‘(’1 (;"\
abldfess T execte ”Efi

51)16),“& j,.ln,\fd_ Y e em(o&m) does have only 36_&._?%_ ho en tede Jo
TTA a5 A6 bits & sed Jor . oftode + So howte Solve fhis dilemma?
- 15 oy lemma

6 &né Solu}rm o ﬁ_{aufe V(Uuem) iﬂ%ge& ev’gr_ﬁ_b{} cff R
iﬂ\\zo ;9\\‘0“\<‘i C‘\M‘\? be O;’SV\(& li\i’;‘}m(,hd\% C\(Q_Oq;(t.J 0\“|\C‘)ﬂecl'

N !‘;i 20 \3\'\’6\ jTAZ?f’)_)mi?\h;\ !\?OM i Mdr ’PtH ({{}\Q. I- ’/b}ﬂ()lﬁn
ok e 2 s\sh‘\gq& [ouig JTA;,‘IS) aQ obb{,\‘&fﬁw@ fha. ﬁ(&

o) 40 et il ef FOTE
Syt Mg of aldgtiny mote 75 2 d Beudo - dieet “JW@ .

Mips Assenly cde
0x0040005C e
- o0 4000R0 S 442 $40, 90,301

| etaction 12 00064 000A D

Tho TTA o the J2
Tre ko, vses pseudo- Jicect addsing -
‘lE?em Hj Cobe— ¥ 'EEH' Ti f:— &)
e -
e —if=
add
OO:OH o0 ©0O! qu.,¢oaé o_b_c;)g‘_égplpqa (OXOC!OOOZB)
c il |
(0300400040 i
STA OO0 OORE 0100 0000 boo O O000 &0@ 00O
e 09,_9_90_&2992&"00. .
& 2 o 2o
[

*\i\“_ . T 1('”'\0\ \\) \“‘\‘\ﬁ R\
= b L
bﬁ'\" ; Sy -,.\ N) ;A,%))'}L'Q /\molml:fr“ oF A
]V Jl\ AN (’\C\\w\‘fﬁ% ‘\i : ;‘g % ‘M)

2 V& GAven 5{33

Lt
mGlY\\?\\\ \Ou\\ﬁﬂ\; R’L‘)\U" or ij g)’

“1 ('_-’
M= 2" Bibs(B)
Eri(’.\. -mj“ L" 5 C\ J
=3 - o b=
Calalak Yhe Nm\m\s .\,3)\\:, (_q\’c\(\\i\ CJ, voochinez witho ad

* p | P o L.
“ize of GO 6oLk b ag Lt (© 22-blor

) o : il it _
N \ e
5 ol rgbon . TR 2N G i u? =
_,.vlolwéh iK:Z = =)
N o= AiMi— SO i
= C4KE 1 —oE ot
— +O \o
Gy N = ’A’?.U‘/] Tl e
M= 2‘241’ i (\22(07(2—4'@

= J6 M3

(@) N 20 L (el
22 SOl %
M j :_2/ DGOSR

= 442

MIPs has, 32-bi} a ddrezses yThe. MiPs a&ér@@g spans, 4-Gg,

Word N\L\@;wa oz divisible bﬂ 4- and mn,ae P’Om 0 4o O)(FFFFFFPC
The Mips Memory Map hap addesses, for dats woecls foc Fhie Corplafe
ee Tk a\eo g (cxfomjras Fe Shed
The code- Inehndiung as el
ad ok o higne addcess -

B Contept andi=,
e OFMW\CJS e S+D\’C~rj. 1o mgmgnj

i T . %

Pseudoinstructions
Exceptions

Signed and unsigned instructi

Floating-point instructions

Module Il (Cont...)

Based on true facts from:

David Money Harris, Sarah L Harris, Digital Design and Computer Architecture,
Morgan Kaufmann — Elsevier, 2009

Pseudo-instructions

* MIPS is a RISC, so instr size and h/w complexity
are minimized by keeping no: of instrs small.

* If an instr is not available in MIPS instr set, it is
due to the fact that the same operation can be
performed using one or more existing MIPS instrs.

* MIPS defines Pseudo-instructions that are not
actually part of instr set but are commonly used
by programmers and compilers.

* When converted to machine code, Pseudo-
instructions are translated into one or more MIPS
instrs.

7/11/2021

Pseudo-instructions

* Forex, load immediate pseudo-instruction
(11i) loads a 32-bit constant using a combination of

lui and ori instructions.

* Themultiply pseudo-instruction (mul) provides
a three-operand multiply, multiplying two registers

and putting the 32 least significant bits of the result

into a third register.

* Theno operation pseudo-instruction (nop)
performs no operation.

— The PCis incremented by 4 upon its execution.

— No other registers or memory values are altered.

— The machine code for the nop instruction is

0x00000000.

11 $s0, 0x1234AA77 |lui $s0, 0x1234
ori $s0, OxAATT7
clear $tO add $t0, S0, SO
move $sl, $s2 add $s2, S$s1, 50
nop sll $0, SO, O

7/11/2021

Pseudo-instructions

* Some pseudo-instructions require a temporary
register for intermediate calculations.

* For example, the pseudo-instruction
begq $t2, imm,..,, Loop

compares $t2 to a 16-bitimmediate, imm, ;..

* Need a temp register to store the 16-bit
immediate.

* Assemblers use the assembler register, Sat, for
such purposes.

* ltuses Sat toconverting a pseudo-instruction
to real MIPS instructions.-=>

[able 6.6 Pseudoinstruction usig $at

Cortesponding
Pseudomstruction MIPS Instructions

7/11/2021

Exceptions

An Exception is an Unexpected, Unscheduled
Procedure Call that causes the Processor to Jump
to a new Address in Memory.

Exceptions may be caused by h/w or s/w.

For ex, processor may receive signal that user
pressed a key on keyboard.

Processor stops what it is doing, determine which
key was pressed, save it for future reference, then
resume the program that was running.

Such a h/w exception triggered by an Input/
Output (I/0) device such as a keyboard is called
an Interrupt.

Exceptions

Alternatively, program may encounter an error
condition such as an undefined instruction.

The program then jumps to code in operating
system (OS), which may choose to terminate
the offending program.

S/w exceptions are sometimes called Traps.

Other causes of exceptions incl div by O,
attempts to read non-existent memory, h/w
malfunctions, debugger break-points, and
arithmetic overflow.

7/11/2021

Exception Handler
Processor records Cause of an exception and value
of PC at time exception occurs.
It then jumps to Exception handler procedure.

Exception handler is code in OS that examines
cause of exception and responds appropriately (by
reading keyboard on a h/w interrupt).

It then Returns to the program that was executing
before exception took place.

In MIPS, Exception handler is always located at
0x80000180.

When an exception occurs, processor always Jumps
to this instruction addr, regardless of cause.

Exception Handler

The MIPS architecture uses a special-purpose register,
called Cause register, to record cause of exception.

Different codes are used to record different exception
causes, as given in Table.

The exception handler code reads Cause register to
determine how to handle exception.

MIPS uses another special-purpose register called the
Exception Program Counter (EPC) to store the value of
the PC at the time an exception takes place.

Processor returns to addr in EPC after handling
exception.

This is analogous to using Sra to store old value of PC
during a jal instruction.

7/11/2021

! Exception Causes

crui

COMPUTER ARCHITE

Hardware Interrupt 0x00000000
System Call 0x00000020
Breakpoint / Divide by 0 0x00000024
Undefined Instruction 0x00000028
Arithmetic Overflow 0x00000030

Chapter 6 <11>

Exception Registers
The EPC and Cause registers are not part of the
MIPS register file.
The mfc0 (move from coprocessor 0) instruction

copies these and other special-purpose registers
into one of the general purpose registers.

Coprocessor O is called the MIPS processor
control; it handles interrupts and processor
diagnostics.

Forex, mfcO $t0, Cause
copies the Cause register into St 0.

7/11/2021

7/11/2021

Exception Registers

* The syscall andbreak instructions cause

traps to perform system calls or debugger
breakpoints.

* Exception handler uses EPC to look up instr
and determine nature of system call or
breakpoint by looking at fields of instr.

Signed and Unsigned Instructions

* Addition and Subtraction
* Multiplication and Division
» Set less than

Addition and Subtraction

Addition and subtraction are performed identically
whether number is signed or unsigned. o

But, interpretation of the results is different.

If two large signed numbers are added togetner, the
result may incorrectly produce the opposite sign.

For ex, adding the following two huge positive
numbers gives a negative result:
OX7FFFFFFF+0Xx7FFFFFFF=0xFFFFFFFE=-2

Similarly, adding two huge negative numbers gives a
positive result,

0x800000014+0x80000001=0x00000002.
This is called Arithmetic Overflow.

MIPS processor takes an Exception on Arithmetic
Overflow.

7/11/2021

Addition and Subtraction

MIPS provides signed and unsigned versions of
Addition and Subtraction.

Signed versions are add, addi, sub.

Unsigned versions are addu, addiu, subu.

The two versions are identical except that signed
versions trigger an Exception on _Overflow,
whereas unsigned versions do not.

Because C ignores Exceptions, C programs
technically use the unsigned versions of these
instructions.

Multiplication and Division

* Multiplication and division behave differently for signed
and unsigned numbers.

* For ex, as an unsigned number, OxFFFFFFFF represents
a large number, but as a signed number it represents 1.

* Hence, OXFFFFFFFF x OxFFFFFFFF would equal
OXFFFFFFFE0O0000001 if the numbers were unsigned
but 0x0000000000000001 if the numbers were

e — ——

signed. _ - G——————

* Therefore, multiplication and division come in both
signed and unsigned flavors.

* mult and div treat the operands as signed numbers.

* multu and divu treat the operands as unsigned
numbers.

7/11/2021

Set Less Than

Set less than instructions can compare either two
registers (s1t) or a register and an immediate (s1ti).
Set less than also comes in signed (s1t and slti)
and unsigned (s1tuand sltiu)versions.

In a signed comparison, 0x80000000 is less than any
other number, because it is the most negative 2’s
complement number.

In an unsigned comparison, 0x80000000 is greater
than Ox7FFFFFFF but less than 0x80000001,
because all numbers are positive.

Beware that sltiu sign-extends the immediate

before treating it as an unsigned number. ,’/‘. .:‘—\
"._\\HH-V /§‘ v

Loads
Byte loads come in signed (1b) and unsigned
(1bu) versions.

1b sign-extends the byte, and lbu zero-
extends the byte to fill the entire 32-bit
register.

Similarly, MIPS provides signed and unsigned
half-word loads (1h and 1lhu), which load
two bytes into the lower half and sign- or
zero-extend the upper half of the word.

7/11/2021

10

Floating-Point Instructions
The MIPS architecture defines floating-point
coprocessor, known as Coprocessor 1 alongside
the main processor.

MIPS defines 32-bit floating-point registers, Sf0—
$f£31. How many?

These 32 registers are separate from the ordinary
registers used so far.

MIPS supports both single- and double-precision
|IEEE floating point arithmetic.

Double precision (64-bit) numbers are stored in

pairs of 32-bit registers, so only the 16 even-

numbered registers ($f0, $f2, S$f4,

, S£30) are used to specify double-precision
operations.

COMPUTER ARCHITECTURE

Floating-Point Instructions

$fv0 - Sfvl |0,2 return values

Sft0 - $ft3 |4,6,8,10 temporary variables
$fa0 - $fal |[12,14 Function arguments
Sftd - $ft8 | 16,18 temporary variables

$fs0 - $£fs5 |20,22,24,26,28,30 saved variables

Chapter 6 <22>

7/11/2021

11

Floating-Point Instructions

Floating-point instructions all have an Opcode of
17(10001,).

They require both a funct field and a cop
(coprocessor) field to indicate the type of instruction.

Hence, MIPS defines the F-type instruction format for
floating-point instructions, shown.

Floating-point instructions come in both single- and
double-precision flavors.

Cop=16 (100002) for single-precision instr or 17
(100012) for double precision instrs.

Like R-type instrs, F-type instructions have two source
operands, fs and ft, and one destination, £d.

! F-Type Instruction Format

Ui

"

COMPUTER ARCHITEC

* Opcode =17 (010001,)

* Single-precision:
- cop =16(010000,)
- add.s, sub.s,div.s, neg.s, abs.s, etc.

» Double-precision:
~ cop=17(010001,)
- add.d, sub.d,div.d, neg.d, abs.d, etc.

* 3 register operands:
- fs, ft: source operands
- £d: destination operands F'Type

op cop ft fs fd funct
6bits 5bits 5bits 5bits 5 bits 6 bits

Chapter 6 <24>

7/11/2021

12

Floating-Point Instructions

Instruction precision is indicated by .s and
.d in the mnemonic.

Floating-point arithmetic instructions include:
Addition (add. s, add.d)

Subtraction (sub. sz, sub.d)

Multiplication (mul. s, mul.d),

Division (div.s, div.d)

Negation (heg. s, neg.d)

Absolute value (abs. s, abs.d).

Floating-point branches

These have two parts:

First, a compare instruction is used to set or clear the
floating-point condition flag (fpcond) .

Then, a conditional branch checks the value of the flag.

The compare instructions include equality

(c.seqg.s/c.seq.d), less than (c.1t.s/c.1t.d), and
less than orequalto (c.le.s/c.le.d).

The conditional branch instructions are bclf and bclt
that branch if fpcond is FALSE or TRUE, respectively.

Inequality, greater than or equal to, and greater than
comparisons are performed with seq, 1t, and le,
followed by bc1f.

Floating-point registers are loaded and stored from
memory using 1wcl and swcl.

These instructions move 32 bits, so two instructions are
necessary to handle a double-precision number.

7/11/2021

13

RE

 Set/clear condition flag: fpcond
— Equality: c.seq.s, c.seqg.d
— Lessthan: c.1t.s,c.1t.d
— Less thanorequal: c.le.s,c.le.d

* Conditional branch
— bclf: branches if fpcond is FALSE
— bclt: branches if fpcond is TRUE

» [Loads and stores
—lwcl: lwel S$ftl, 42(S$sl)
- swcl:swcl $fs2, 17 ($sp)

COMPUTER ARCHITECTU

Chapter 6 <27>

' Floating-Point Branches

Home Work!

Implement the following Pseudo-instructions as
a set of MIPS Instructions:

rotate left (rol)

rotate right (ror)

7/11/2021

14

Translating and Starting
Program

Module Ill Topic

Based on true facts from:

David Money Harris, Sarah L Harris, Digital Design and
Computer Architecture, Morgan Kaufmann — Elsevier, 2009

*Firstly...

e Some Pioneers of
Computer Organization
and Architecture...

*To Inspire you all...

7/11/2021

Ada Lovelace, 1815-1852

* Wrote the first computer F:‘
program |

* Her program calculated
the Bernoulli numbers on
Charles Babbage’s
Analytical Engine

» She was the daughter of

the poet Lord Byron

dONIPUTER ARCHITECTURE

University with a Ph.D. in
mathematics

* Developed first compiler

* Helped develop the COBOL
programming language

* Highly awarded naval
officer

* Received World War Il
Victory Medal and National
Defense Service Medal,
among others

7/11/2021

Robert Dennard, 1932 -

v
S
o
)
(aa]
w‘
__2_:
Q
—
=
(2]
e

* Invented DRAM in
1966 at IBM

 Others were skeptical
that the idea would
work

* By the mid-1970’s
DRAM in virtually all
computers

BIGITAL BUILDING BLOCKS

* Developed memories and high

¢ Invented Flash memory as an

e The process of erasing the memory

¢ Toshiba slow to commercialize the

* Flash has grown into a $25 billion

speed circuits at Toshiba, 1971-1994

unauthorized project pursued during
nights and weekends in the late
1970’s

reminded him of the flash of a
camera

idea; Intel was first to market in
1988

per year market

7/11/2021

John Hennessy

RE

TECTU

ARCHI

| AW

TER AR

PU

MIPS Memory Map

A ddress S egm ent
OxFFFFFFFC

ui

T

C

R eserved

TE

|

0x80000000
0x7FFFFFFC st

c k

®

CHI

D ynamic D ata

0x10010000 H e
0x1000FFFC

»

p

R B

4

S tatic D ata

0x10000000
0XxOFFFFFFC

TER AR

2 =y

Text

0x00400000
0x003FFFFC

0x0000000O0O0

COMPU

Chapter 6 <8>

7/11/2021

High Level Code
.
[Compiler]
.

Assembly Code
-
(Assembler J
Steps for Translating v Obiject Files
and Starting a Program e =

Library

[T

Steps...

» Steps required to translate a program from a high
level language into machine language and to start
executing that program are indicated .

* First, the high-level code is compiled into assembly
code.

* The assembly code is assembled into machine code

in an object file.

* The linker combines the machine code with object
code from libraries and other files to produce an
entire executable program.

* |In practice, most compilers perform all three steps
of compiling, assembling, and linking.

* Finally, the loader loads the program into memory
and starts execution.

7/11/2021

®))

Step 1: Compilation (©

A compiler translates high-level code into
assembly language.

* Code Example 6.30 shows a simple hll program
with three global variables and two procedures,
along with the assembly code produced by a
typical compiler.

* The .data and .text keywords are
assembler directives that indicate where the text
and data segments begin.

* Labels are used for global variables £, g, andy.

* Their storage location will be determined by the
assembler.

)
)

-~ J

Code Example 6,30 COMPILING A HIGH-LEVEL PROGRAM
High-Level Code

int f. g, y; // global variables

MIPS Assembly Code

7/11/2021

7/11/2021

Example Program: C Code

int £, g, y; // global variables

int main (void)

ERR R P

f =
g =
y = sum(f, g);

2;
3;

return y;

}

int sum(int a, int b) {
return (a + b);

}

COMPUTER ARCHITECTURE

Chapter 6 <13>

Example Program: MIPS Assembly

X .data
int £, g, yv; // global ‘.
g:
| o
« int main(void) .
= { .text
" main:
2 addi $sp, $sp, -4 # stack frame
F= 2. sw Sra, 0($sp) # store Sra
_ 5. addi $a0, $0, 2 ¥ $a0 = 2
sw $a0, f # £ =2
:. y = sun(f, g); addi $al, $0, 3 # Sal = 3
[return y; sw $al, g #g=3
} jal sum # call sum
B
sw Sv0, vy # vy = sum()
int sum(int a, int b) | 1w Sra, 0($sp) # restore S$ra
return (a + b); addi $sp, $sp, 4 # restore $sp
} jr Sra # return to OS
sum:

add $v0, $a0, Sal # sv0 = a + b
jr Sra # return
Chapter 6 <14>

COMPUTER ARCHITECTURE

Step 2: Assembling

The assembler turns assembly language code
into object file containing machine lang code.

The assembler makes two passes thro’

assembly code.

On first pass, assembler assigns instruction
addresses and finds all symbols, such as labels

and global variable names.

The code after first assembler pass is shown.

Assembling the code

0x00400000 main: addi $sp,
0x00400004 SwW $ra,
0x00400008 addi $ao0,
0x0040000C SW $a0,
0x00400010 addi $al,
0x00400014 SwW $al,
0x00400018 jal sum
0x0040001C SwW $vO,
0x00400020 Tw $ra,
0x00400024 addi $sp.
0x00400028 jr $ra
0x0040002C sum: add $vO0,
0x00400030 jr $ra

$sp, —4
0($sp)
$0, 2

$0, 3

O{Ssp}
$sp, 4

$a0, $al

7/11/2021

7/11/2021

Symbol Table

* Names and addresses of symbols are kept in a
symbol table as shown in Table 6.4 .

* The symbol addresses are filled in after first
pass, when addresses of labels are known.

* Global variables are assigned storage locations
in global data segment of memory, starting at
memory address 0x10000000.

' Example Program: Symbol Table

RE

COMPUTER ARCHITECTU

Chapter 6 <18>

7/11/2021

= Example Program: Symbol Table
s,

s

=

E £ 0x10000000

8 g 0x10000004

<I y 0x10000008

E& main 0x00400000

a sum 0x0040002C

Q

Table 6.4 Symbol table

Symbol Address

f 0x10000000

g 0x10000004

y 0x10000008
main 0x00400000
sum 0x0040002C

10

Assembler-Second pass

* On second pass through the code, assembler
produces machine language code.

Addresses for global variables and labels are
taken from symbol table.

The machine language code and symbol table
are stored in object file.

Linker

Linker combines all of object files into one
machine language file called executable.

The linker relocates data and instructions in
object files so that they are not all on top of
each other.

It uses information in symbol tables to adjust
addresses of global variables and of labels that
are relocated.

7/11/2021

11

Linking the code

Executable file header Text Size Data Size
0x34 (52 bytes) 0xC (12 bytes)
Text segment Address Instruction
0x00400000 0x23BDFFFC
0x00400004 0XAFBF0000
0x00400008 0x20040002
0x0040000C 0xAF248000
0x00400010 0x20050003
0x00400014 0xAFE58004
0x00400018 0x0C10000B
0x0040001C 0xAF828008
0x00400020 0x@FBF0000
0x00400024 0x238D0004
0x00400028 0x03E00008
0x0040002C 0x00851020
0x00400030 0x03E0008
Data segment Address Data
0x10000000 f
0x10000004 9
0x10000008 y

addi $sp, Ssp, —4

sw Sra, 0(Ssp)

addi $a0, $0, 2

sw $a0, 0x8000 (Sgp)
addi $a1, 80,3

sw Sai, 0x8004 (Sgp)
jal Ox0040002C

sw $v0, 0xB008 (Sgp)

Iw $ra, 0(Ssp)
addi $sp, Ssp, 4
jr sra

add sv0, $a0, sat
ir sra

COMPUTER ARCHITECTURE

Example Program: Executable

Executable file header

Text Size

Data Size

0x34 (52 bytes)

0xC (12 bytes)

Text segment Address Instruction
0x00400000 0x23BDFFFC
0x00400004 OXAFBF0000
0x00400008 0x20040002
0x0040000C OxAF848000
0x00400010 0x20050003
0x00400014 OXAF858004
0x00400018 0x0C10000B
0x0040001C OxAF828008
0x00400020 0x8FBF0000
0x00400024 0x23BD0004
0x00400028 0x03E00008
0x0040002C 0x00851020
0x00400030 0x03E00008

Data segment Address Data
0x10000000 f
0x10000004 g
0x10000008 y

addi $sp, $sp, -4

sw $ra, 0 ($sp)

addi $a0, $0, 2

sw $a0, 0x8000 ($gp)
addi $a1, $0, 3

sw $at, 0x8004 ($gp)
jal 0x0040002C

sw $v0, 0x8008 ($gp)
Iw $ra, 0 ($sp)

addi $sp, $sp, -4

jr $ra
add $v0, $a0, $a1
jr $ra

Chapter 6 <24>

7/11/2021

12

Linking the code

It has three sections: executable file header,
text segment, and data segment.

The executable file header reports text size
(code size) and data size (amount of globally
declared data).

Both are given in units of bytes.

The text segment gives instructions and
addresses where they are to be stored.

Linking
Data segment gives addr of each global variable.

Global variables are addressed wrt base addr
given by global pointer, Sgp.

For ex, first store instruction,

sw $a0, 0x8000 (Sgp)

stores value 2 to global var £, which is located at
memory addr 0x10000000.

Offset, 0x8000, is a 16-bit signed num that is sign-
extended and added to base address, $Sgp.

So, Sgp + 0x8000 = 0x10008000 +
OxFFFF8000 = 0x10000000, the memory
address of variable f.

7/11/2021

13

7/11/2021

Step 4: Loading
* The OS loads a program by reading text segment

of executable file from a storage device (usually
the hard disk) into text segment of memory.

* The OS sets Sgp to 0x10008000 (middle of
global data segment) and $sp to Ox7FFFFFEC
(top of dynamic data segment), then performs a
jal 0x00400000 to jump to beginning of
program.

* The diagram shows memory map at the
beginning of program execution.

Loading the code
Address Memory
Reserved
ox7FFFFFFC Stack <« Ssp = Ox7FFFFFFC
0x10010000 Heap
* +— Sgp = O0x10008000
Yy
)
Ox 10000000 f
Ox03E00008
Ox0O08S 1020
Ox03E00008
ox238D000a
Ox8F BFO000
OxAF828008
Oox0C 100008
OxAFBS8004
Ox200S0003
OxAF848000
OX20040002
OxAFBFOC00
OXDO400000 ox23BDFFFC «—— PC = 0x00400000
Reserved

14

TECTURE

/

CH

TER AR

COMPU

Example Program: In Memory

Address

Memory

Reserved

OXTFFFFFFC|

0x10010000

Stack
+

Heap

0x10000000

0x03E00008

0x00851020

0x03E00008

0x23BD0004
0x8FBF0000

0xAF828008

0x0C100008

0xAF858004

0x20050003
0xAF848000

0x20040002

O0xAFBF0000

0x00400000}

0x23BDFFFC

Reserved

<—$sp = OXTFFFFFFC

<—$gp = 0x10008000

<«—PC = 0x00400000

Chapter 6 <29>

7/11/2021

15

MICROARCHITECTURE

EC206 CO MODULE IV

Based on true facts from:

David Money Harris, Sarah L Harris, Digital Design and Computer Architecture,

Morgan Kaufmann — Elsevier, 2009 p.raikumar prof/ECe/NCERC
qraj2015@hotmail.com

13-03-2020

\ M

* To begin with...

* Some more Pioneers of
Computer Organisation!

December 28, 1903 —

replicating machines,

stochastic computing),
and statistics.

13-03-2020

~

©)

David Patterson is the
Fardee Froxcessor of Com uter
Scmncc E_merltus at the
Univcrsit9 of (alifornia at
Berkelcg, which hedlned after

graduatmg from in
1976. He champtone& Reduced
]nstructlon Set Computcrs
R]SC Rcdun&ant Arra

]ncxpcns;ve Disks (KA]D),
SFARC for SUN

Mlcrosgstcms and thworks of

Worl(statlons (NOW) ecach of
which helped lead to billion dollar

mclustrles

INTRODUCTION TO
MICROARCHITECTURE

* Microarchitecture, is the connection between
Logic _and Architecture and is the specific
arrangement of Registers, ALUs, Finite State
Machines (FSMs), Memories, and other logic

building blocks needed to implement
Architecture.

A particular Architecture, such as MIPS, may have
many different Microarchitectures, each with
different trade-offs of Performance, Cost, and
Complexity.

They all run the same programs, but thelr internal
designs vary widely.

13-03-2020

13-03-2020

Architectural State and Instruction Set

 Computer architecture is defined by its
Instruction Set and Architectural State.

* The Architectural State for the MIPS Processor
consists of the Program Counter and the 32

Registers.

* Any MIPS Microarchitecture must contain all of
this State.

* Based on the current architectural state, the
Processor executes a particular instruction with a
particular set of data to produce a new
architectural state.

* Some microarchitectures contain additional non-
architectural state to either simplify the logic or
improve performance.

Architectural State and Instruction Set
* Consider only a subset of the MIPS instruction
set.

* R-type arithmetic/logic instructions: add,
sub, and, or, slt

* Memory instructions: 1w, sw

* Branches: beq

» After building the microarchitectures with these
instructions, extend them to handle addi and
7.

* These particular instructions were chosen

because they are sufficient to write many
interesting programs.

Design Process
Divide the Microarchitectures into two interacting
parts:
The Datapath and the Control.
The Datapath operates on words of data.

It contains structures such as memories, registers,
ALUs, and multiplexers.

MIPS is a 32-bit architecture, so we will use a 32-bit

datapath.

The Control unit receives the current instruction from
the datapath and tells the datapath how to execute
that instruction.

Specifically, the Control unit produces multiplexer
select, register enable, and memory write signals to
control the operation of the datapath.

Design Process

To start with hardware containing the state elements.
These elements incl memories and architectural state
(the program counter and registers).

Then, add blocks of combinational logic between state
elements to compute new state based on current state.
The instruction is read from part of memory;

load and store instructions then read or write data
from another part of memory.

Hence, to partition the overall memory into two smaller
memories, one containing instructions and the other
containing data.

The diagram shows a block diagram with four state

elements: the program counter, register file, and
instruction and data memories.

13-03-2020

MICROARCHITECTURE

MIPS State Elements

CLK CLK CLK
| | | |
% PC WE3 WE
32 2 e A RD b= 755 Al RD1 q:,‘hz
% %2 -] A2 RD2 =
Instruction 5 32] A RD
Memory Data
71 A3 Regist Memory
egister
=l WD3 Ee =] WD

PLEASE DRAW !!

Design Process

Program Counter is an ordinary 32-bit register.

Its output, PC, points to the current instruction.

Its input, PC’, indicates the address of the next instruction.
The Instruction memory has a single read port.

It takes a 32-bit instruction address input, A, and reads 32-bit
data (i.e., instruction) from that address onto read data output,
RD.

The 32-element 32-bit Register file has 2 read ports and 1
write port.

The read ports take 5-bit address inputs, A1 and A2, each
specifying one of 2> = 32-bit registers as source operands.

They read the 32-bit register values onto read data outputs
RD1 and RD2, respectively.

The write port takes a 5-bit address input, A3; a 32-bit write
data input, WD; a write enable input, WE3; and a clock.

If write enable is 1, register file writes data into specified
register on rising edge of the clock. 12

13-03-2020

Design Process

The data memory has a single read/write port.

If write enable, WE, is 1, it writes data WD into
address A on rising edge of clock.

If write enable is O, it reads address A onto RD.

The instruction memory, register file, and data memory
are all read combinationally.

In other words, if address changes, new data appears
at RD after some propagation delay; no clock is
involved.

They are written only on rising edge of clock.

In this fashion, state of the system is changed only at
clock edge.

The address, data, and write enable must setup
sometime before clock edge and must remain stable
until a hold time after clock edge.

MIPS Microarchitectures

There are three microarchitectures for the MIPS
processor architecture: Single-cycle, Multi-cycle,
and Pipelined.

They differ in the way that the state elements are
connected together and in the amount of non-
architectural state.

Single-cycle Microarchitecture

— The single-cycle microarchitecture executes an entire
instruction in one cycle.

— It is easy to explain and has a simple control unit.

— Because it completes the operation in one cycle, it
does not require any non-architectural state.

— However, the cycle time is limited by the slowest
instruction.

13-03-2020

13-03-2020

MIPS Microarchitectures

* Multi-cycle Microarchitecture

— The multi-cycle microarchitecture executes instructions in
a series of shorter cycles.

— Simpler instructions execute in fewer cycles than
complicated ones.

— Moreover, multi-cycle microarchitecture reduces hardware
cost by reusing expensive hardware blocks such as adders
and memories.

— For ex, the adder may be used on several different cycles
for several purposes while carrying out a single instruction.

— The multi-cycle microprocessor accomplishes this by
adding several non-architectural registers to hold
intermediate results.

— The multi-cycle processor executes only one instruction at
a time, but each instruction takes multiple clock cycles.

MIPS Microarchitectures .

* Pipelined Microarchitecture

— The pipelined microarchitecture applies pipelining to the
single-cycle microarchitecture.

— It therefore can execute several instructions
simultaneously, improving the throughput significantly.

— Pipelining must add logic to handle dependencies
between simultaneously executing instructions.

— It also requires non-architectural pipeline registers.
— The added logic and registers are worthwhile;

* All commercial high-performance Processors use
Pipelining today.

* MIPS- Microprocessor without Interlocked Pipelining
Stages

* SPARC- Scalable Processor ARChitecture

* ARM - Advanced RISC Machine

Test your understanding!

1.Compare and Contrast the types of MIPS
Microarchitectures.

2. Which Microarchitectures need Non-architectural
elements and Why?

3. State the main parts of the Microarchitecture and
provide their features.

4. Define Microarchitecture and clarify whether a
specific Architecture can support more than one
Microarchitecture.

5. Construct the State Elements with the aid of well
labelled diagrams and provide their operation.

PERFORMANCE ANALYSIS

* The execution time of a program, measured in
seconds, is given by:

. . } . . cycles seconds
Execution Time = (# mstructions ((
mstruction cycle

e No: of instructions for each program is
constant, independent of microarchitecture.

* No: of Cycles Per Instruction, often called CPI,
is the no: of clock cycles required to execute

an average instruction.

13-03-2020

CPI (Cont...)

It is the reciprocal of the throughput
(Instructions Per Cycle, or IPC).

Different microarchitectures have different
CPlIs.

Assume an ideal memory system that does
not affect the CPI.

Multi-cycle data path and control use the term
CPI(M), which indicates mean clock cycles per
instruction.

Clock Period T_

The number of seconds per Cycle is the Clock
Period, Tc.

The clock period is determined by critical path
through logic on processor.

Different microarchitectures have different clock
periods.

Logic and circuit designs also significantly affect
clock period.

For ex , a carry-look ahead adder is faster than a
ripple-carry adder.

13-03-2020

10

13-03-2020

Challenge for the Microarchitect

* Choose the design that minimizes execution time
while satisfying constraints on cost and/or power
consumption.

* Microarchitectural decisions affect both CPl and
T. and are influenced by logic and circuit designs,
so determining the best choice requires careful

analysis.

* There are many other factors that affect overall
computer performance.

* For ex, hard disk, memory, graphics system, and
network connection may be limiting factors that
make processor performance irrelevant.

Test your understanding!

1. Identify the various quantities that can be
used for performance analysis and give their
definitions.

2. Define and quantify the following: PET, CPI,
IPC, CPI(M), CP.

3. Explain the challenges faced by the designer
of Microarchitecture.

11

SINGLE-CYCLE PROCESSOR

Design a MIPS microarchitecture that executes
instructions in a single cycle in following stages:

1.

Construct Datapath by connecting State
Elements with combinational logic that can
execute various instructions.

Control signals determine which specific
instruction is carried out by datapath at any
given time.

Controller contains combinational logic that
generates appropriate control signals based on
current instruction.

Then do Performance Analysis.

Single-Cycle Datapath

Develop single-cycle datapath, adding one piece at a time
to State Elements.

New connections are shown in black, while h/w that has
already been studied is shown in gray, with control signals
shown in blue.

Step-1:Fetch Instruction from memory

Program Counter (PC) contains address of current
instruction to execute.

First step is to read this instruction from Instruction

Memory.

Program Counter (PC) is simply connected to address

i/p of Instruction Memory.
Instruction Memory reads out, or Fetches, the 32-bit

instruction, labeled Instr.

13-03-2020

12

Step: 1: Fetch Instruction from memory

PC Instr

—

&, &

DRAW PLEASE!!
. — N

Step: 2: Read Source Operand from

Register File — <>~ —>-

\

The processor’s actions depend on specific
instruction that was fetched.

First work out Datapath connections for 1w
instruction.

Generalize Datapath to handle other instructions.

For a 1w instruction, next step is to read source
register containing base address.

This reg is in rs field of instruction,
Instr25:21.

These bits of instruction are connected to
address i/p of one of Register File read ports, Al.

Register file reads register value onto RD1.

13-03-2020

13

13-03-2020

Step: 2: Read Source Operand from Register File

25:21
st >

Step: 3: Sign Extend the Immediate
The 1w instruction also requires an offset.

The offset is stored in immediate field of
instruction, Instrc.q.

The 16-bit immediate might be either positive or
negative, it must be sign-extended to 32 bits.

The 32-bit sign-extended value is called Signimm.

Sign Extension simply copies sign bit (msb) of a
short input into all of upper bits of longer output.

Signlmmc.o= Instr,c, and Signlmmy,.,.= Instri..

14

Step: 3: Sign Extend the Immediate

15:0 : Signimm >
Sign Extend

Step: 4: Compute the Memory
Address

Processor must add base address to offset to find
effective address (EA) to read from memory using ALU.

ALU receives two operands, SrcA and SrcB.

SrcA comes from register file, and SrcB comes from
sign-extended immediate.

The ALU can perform many operations.
The 3-bit ALUControl signal specifies the operation.

The ALU generates a 32-bit ALUResult and a Zero flag,
that indicates whether ALUResult 0.

For a 1w instruction, the ALUControl signal should be
set to 010 to add the base address and offset.

ALUResult is sent to the data memory as the address
for the load instruction.

13-03-2020

15

13-03-2020

Step: 4: Compute the Memory Address

ALUControl,

Signimm

Step: 5: Read data from memory and write it
back to register file

* The data is read from data memory onto ReadData bus, then
written back to destn register in register file at end of cycle.

* Port 3 of register file is write port.

* Destn register for 1w instruction is specified in rt field,
Instr,,.,¢ Which is connected to port 3 address input, A3, of
register file.

* The ReadData bus is connected to port 3 write data input,
WD3, of register file.

* A control signal called RegWrite is connected to port 3 write
enable input, WE3, and is asserted during a 1w instruction so
that the data value is written into register file.

* The write takes place on rising edge of the clock at end of cycle.

16

13-03-2020

Step: 5: Read data from memory and write it back
to register file

ReadData

Step: 6: Determine Address of next
Instruction

While instruction is being executed, processor
must compute address of next instruction,
PC’.

Because instructions are 32 bits= 4 Bytes,
next instruction is at PC+ 4.

Another adder used to increment the PC by 4.

The new address is written into program
counter on next rising edge of the clock.

This completes the datapath for 1w
instruction.

17

Step: 6: Determine Address of next Instruction

state

PCPlus4

Datapath for the sw instruction

sw instruction reads a base address from port 1
of register and sign-extends an immediate.

ALU adds base address to immediate to find
effective memory address.

All of these functions are already supported by
the datapath.

The sw instruction also reads a second register
from register file and writes it to data memory.
The register is specified in the rt field,
Instr,y.i6-

These bits of the instruction are connected to the
second register file read port, A2.

13-03-2020

18

13-03-2020

Datapath for the sw instruction
The register value is read onto the RD2 port.

It is connected to the write data port of the data
memory.

The write enable port of the data memory, WE, is
controlled by MemWrite.

For a sw instruction, Memirite=1, to write the
data to memory; ALUControl=010, to add the
base address and offset;

RegWrite=0, because nothing should be
written to the register file.

Write Data to Memory for sw Instruction

MemWrite
r

20:16

WriteData

»

19

Datapath for R-type instructions

Extend datapath to handle R-type instructions
add, sub, and, or, slt.

Instructions read two registers from the register file,
perform some ALU operation on them, and write the
result back to a third register file.

They differ only in the specific ALU operation.

Hence, they can all be handled with the same
hardware, using different ALUControl signals.

Enhanced datapath handling R-type instructions.
The register file reads two registers.
The ALU performs an operation on these two registers.

Add a multiplexer to choose SrcB from either the
register file RD2 port or SignImmn.

Datapath for R-type instructions

The MUX is controlled by a new signal, ALUSrc.

ALUSrc is 0 for R-type instructions to choose SrcB
from the register file;

itis 1 for 1w and sw to choose SignImm.

R-type instructions write the ALUResult to
register file.

Add another MUX to choose between ReadData and
ALUResult.

Call its output Result.

This MUX is controlled by another new signal,
MemtoRegq.

MemtoReg is 0 for R-type instructions to choose
Result fromthe ALUResult;

itis 1 for 1w to choose ReadData.

13-03-2020

20

13-03-2020

Datapath for R-type instructions

For R-type instructions, the register is
specified by the rd field, Instr.. ;.

Add a third MUX to choose WriteReg from
the appropriate field of the instruction.

The MUX is controlled by RegDst.

RegDst is 1 for R-type instructions to
choose WriteReg from rd field,
Instrs.qq;

itis O for 1w to choose rt field, Instr,,. .

Datapath enhancement for R-type Instructions

RegDst ALUSrc ALUControl2:0 MemtoReg

ALUResult

Result

21

13-03-2020

Datapath for beq instruction
* Extend datapath to handle beq.

* beg compares two registers.

* If they are equal, it takes the branch by adding
branch offset to program counter.

* Offset is a positive or negative number, stored in
imm field of instruction, Instr,; ...

* The offset indicates the number of instructions to
branch past.

* Hence, immediate must be sign-extended and
multiplied by 4 to get new program counter
value:

e PC’ = PC+ 4 +SignImm x 4.

Datapath enhancement for beq Instruction

22

13-03-2020

Datapath for beq instruction

The next PC value for a taken branch, PCBranch, is
computed by shifting SignImm left by 2 bits,
then addingitto PCP1us4.

The left shift by 2 is an easy way to multiply by 4,
because a shift by a constant amount involves
just wires.

The two registers are compared by computing
SrcA - SrcBusingthe ALU.

If ALUResult is 0, as indicated by the Zero flag
from the ALU, the registers are equal.

We add a MUX to choose PC from either
PCPlus4 or PCBranch.

Datapath for beq instruction

PCBranch is selected if the instruction is a
branch and the Zero flag is asserted.

Hence, Branch is 1 for beq and O for other
instructions.

For beq, ALUControl 110, so the ALU performs a
subtraction.

ALUSrc 0to choose SrcB from the register file.

RegWrite and MemWrite are 0, because a branch
does not write to the register file or memory.

23

MICROARCHITECTURE

Single-Cycle Processor

 \MemtoReg
Control| N
MemWrite
Unit
Branch
[ALUControl,, PCsrc
31:26
—(Op |ALUSIC
=2 Funct |RegDst
IRegwrite
—
CLK CLK
CLK L L
WE3 SrcA WE
A Rp st [P AL RD1 3
__|] 3 ALUResult A RD ReadData 1
Instruction I
Memory 2 A2 RD2 07]sreB < Data
As i 2 WriteData Memory
wD3 Reg_|ster WD
File
2016 0
15:11 1
WriteReg,
PCPlus4 0
ig
4 50

PCBranch

Result

Chapter 7 <47>

Test your understanding!

Analyze the Data Path of the MIPS single cycle processor
for the 1w instruction with the aid of neatly labelled
diagrams.

Construct the Data Path of the MIPS single cycle
processor for the sw instruction with the aid of neatly
labelled diagram.

Construct the Data Path of the MIPS single cycle
processor for the R-type instruction with the aid of
neatly labelled diagram.

Construct the Data Path of the MIPS single cycle
processor for the beq instruction with the aid of neatly
labelled diagram.

P.RAJKUMAR Prof/ECE/NCERC

qraj2015@hotmail.com 48

13-03-2020

24

Single-Cycle Control

’
.

i Control
Unit

Opcodes.;—

Functs.g

Main
Decoder

—— MemtoReg
— MemWrite
—— Branch
— ALUSIC
— RegDst

—— RegWrite

ALUOpl;o

Review of ALU...

ALUControl,.

Seessecsccsccssssssscccccsccssssscnssscccssassassasasans’

000 A&B
001 A|B
010 A+B
011 not used
100 A& ~B
101 A|~B
110 A-B
111 SLT

49

50

13-03-2020

25

Review of ALU Internals...

A
N

e

N-17]|S

€ h[PUsIT
Z|olez

51

Control Unit- ALU Decoder

00 Add
01 Subtract
10 Look at Funct
11 Not Used
00 X 010 (Add)
X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)
1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)
1X 100101 (or) 001 (Or)
1X 101010 (s1t) 111 (SLT)

52

13-03-2020

26

MICROARCHITECTURE

MICROARCHITECTURE

13-03-2020

Control Unit Main Decoder

RegWrite =~ RegDst AluSrc Branch MemWrite MemtoReg ~ ALUOp,,,

R-type | 000000
1w | 100011
swW 101011

beg |000100

Chapter 7 <53>

Control Unit: Main Decoder

RegWrite RegDst AluSrc Branch MemWrite MemtoReg ~ ALUOp,

R-type | 000000 | 1 1 0 0 0 0 10
1w 100011 1 0 1 0 0 0 00
sw 101011 | Q X 1 0 1 X 00

beg | 000100 | 0 X 0 1 0 X 01

Chapter 7 <54>

27

13-03-2020

Test your understanding!

1. Construct the Control Unit of the MIPS Signle
Cycle Processor.

2. Apply the Control Unit Main Decoder for the,
lw, sw, R-type and beq instructions
of MIPS.

Performance Analysis
* Program Execution Time

=(#instructions) x
(cycles/instruction)
x (seconds/cycle)

= (# instructions) x CPI x T.
T limited by critical path (1w)

28

Performance Analysis

Each instruction in the single-cycle processor takes one clock
cycle, so the CPlis 1.

Critical path for 1w instruction starts with PC loading a new
address on rising edge of the clock.

Instruction memory reads next instruction.
The register file reads SrcA.

While the register file is reading, the immediate field is sign-
extended and selected at the ALUSrc MUX to determine
SrcB.

The ALU adds SrcA and SrcBto find the effective address.
The data memory reads from this address.
The MemtoReg MUX selects ReadData.

Finally, Result must setup at the register file before the
next rising clock edge, so that it can be properly written.

Single Cycle Performance

e Hence, the cycle time is:
« Single-cycle critical path:

To = theq pc T tmem + MaX(trpreads Lsext + trud + taru * tmem +

tmux + tRFsetup

 Typically, limiting paths are:
QMemory, ALU, Register file (accesses are slower...)

QT = theq pc + 2tmem * trrread + tmux + taru + tresetup

13-03-2020

29

13-03-2020

Single-Cycle Performance Example

Build a single-cycle MIPS processor in a 65 nm
CMOS manufacturing process. The logic
elements have the delays given in Table.
Compute the execution time for a program with
100 billion instructions. Assume that CPI=1.

Single-Cycle Performance Example

Register clock-t0-Q | tyq pc 30
Register setup tetup 20
Multiplexer rux 25
ALU taLu 200
Memory read tmem 250
Register file read tReread 150
Reqgister file setup trEsetup 20
T.=7

30

Single-Cycle Performance Example

Register clock-t0-Q | tyeq pc 30
Register setup tetup 20
Multiplexer trux 25
ALU talu 200
Memory read tmem 250
Register file read tREread 150
Register file setup | trrerup 20

Te = toeq pc * 2tyem * Treread T tnux T taru t+ trresetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

Single-Cycle Performance Example
Program with 100 billion instructions:

Execution Time = (# instructions) X CPI X T
= (100 x 109)(1)(925 x 1012s)
= 92.5 seconds

13-03-2020

31

13-03-2020

Test your understanding!

1. Analyse the Performance of the MIPS Single
Cycle Processor.

2. From first principles, estimate the PET of a
MIPS Single Cycle Processor, using the same
delay table as before, for a given program
with:

(i) 10 lakh instructions
(ii) 10 crore instructions

32

13-03-2020

Multi-Cycle Microarchitecture

Problems with Single-cycle Processor

* The single-cycle processor has three primary
drawbacks.

—1. It requires a clock cycle long enough to support
slowest instruction (lw), even though most
instructions are faster.

— 2. It requires three adders (one in the ALU and two for
the PC logic), adders are relatively expensive circuits,
especially if they must be fast.

— 3. It has separate Instruction and Data Memories,
which may not be realistic.
* Most computers have a single large memory that
holds both instructions and data and that can be
read and written.

Multi-cycle Processor

Multicycle processor breaks an instruction into
multiple shorter steps.

In each short step, the processor can read or write the
memory or register file or use the ALU.

Different instructions use different numbers of steps,
so simpler instructions can complete faster than more
complex ones.

The processor needs only one adder; this adder is
reused for different purposes on various steps.

And the processor uses a combined memory for
instructions and data.

The instruction is fetched from memory on the first
step, and data may be read or written on later steps.

Design of Multi-cycle Processor

First, construct a Datapath by connecting the
architectural state elements and memories with
combinational logic.

But, this time, also add non-architectural state
elements to hold intermediate results between the
steps.

Then design the Controller.

The controller produces different signals on different
steps during execution of a single instruction, so it is
now a finite state machine rather than combinational
logic.

Examine how to add new instructions to the processor.

Finally, analyze the performance of the multicycle
processor and compare it to the single-cycle processor.

13-03-2020

13-03-2020

Replace Instruction and Data memories with a
single unified memory — more realistic

CLK CLK
CLK | | |

% WE WE3
pPC' PC RD — Al RD1 p=—
EN -1 A — A2 RD2 |
Instr / Data

Memory —] A3
- WD

Register
File

- WD3

Multi-cycle Datapath

Test your understanding!

1. Explain the drawbacks of single cycle micro-
architecture.

2. How does multi cycle micro-architecture
work?

3. Explain the design of multi cycle micro-
architecture with use of modified state
elements.

Step-1: Fetch Instruction

IRWrite

CLK

pC N instr
g k)

Multi-cycle Datapath

Step-2a: Read Source Operands from Reg File

CLK

' A

Multi-cycle Datapath: 1w Instruction

13-03-2020

Step-2b: Sign Extend the Immediate

Signimm
15:0

Multi-cycle Datapath: 1w Instruction

Step-3: Compute the Memory Address

ssssss

Multi-cycle Datapath: 1w Address

13-03-2020

13-03-2020

Step-4: Read Data from Memory

AAAAAA

Multi-cycle Datapath: 1w Memory Read

Step-5: Write Data back to Register File

eeeeeeee

Multi-cycle Datapath: 1w Write Register

13-03-2020

Step-6: Increment PC

PPPPPPP

Write Data in rt to Memory

Multi-cycle Datapath: sw Instruction

13-03-2020

e Read from rs and rt

« Write ALUResult to register file
» Write to rd (instead of rt)

RegDst MemtoReg

| —
1
0
1

Multi-cycle Datapath: R-type Instruction

« rs == rt? -> Check the condition
« BTA = (sign-extended immediate << 2) + (PC+4)

PCEn
BBBBB h PCSrc
5
I
Zero
PC)

Multi-cycle Datapath: beq Instruction

PC

| [Mec
EN]|

Test your understanding!

Analyze the Data Path of the MIPS multi cycle
processor for the 1w instruction with the aid of
neatly labelled diagrams.

Construct the Data Path of the MIPS multi cycle
processor for the sw instruction with the aid of
neatly labelled diagram.

Construct the Data Path of the MIPS multi cycle
processor for the R-type instruction with the aid
of neatly labelled diagram.

Construct the Data Path of the MIPS multi cycle
processor for the beq instruction with the aid of
neatly labelled diagram.

Multi-cycle Processor

CLK

lorD| Contro
MemWrite ni
IRWrite

12— Func

13-03-2020

Unit

Multi-cycle Control

Main
Controller

50 (FSM)

— MemtoReg
— RegDst
— lorD
—PCSrc

— ALUSICB,
—ALUSrcA
—IRWrite
—MemWrite
—PCWrite
— Branch

— RegWrite

o = e = = = = = e e

19

20

13-03-2020

10

22

13-03-2020

11

13-03-2020

Test your understanding!

1. Construct the Control Unit of the MIPS Multi
Cycle Processor.

2. Apply the Control Unit Main Decoder for the,
lw, sw, R-type and beq instructions

of the MIPS Multi Cycle Processor.

Multi-cycle Microarchitecture

Performance Analysis
* The Execution Time of an instruction depends on both
the number of cycles it uses and the cycle time.

* Single-cycle processor performed all instructions in one
cycle, but Multi-cycle processor uses varying numbers
of cycles for various instructions.

* However, the multi-cycle processor does less work in a
single cycle and, so, has a shorter cycle time.

* The multicycle processor requires three cycles for beg
and 7 instructions, four cycles for sw, addi, and R-
type instructions, and five cycles for 1w instructions.

* The CPI depends on the relative likelihood that each
instruction is used.

12

Example: MULTI-CYCLE PROCESSOR

CPI(M)

The SPECINT2000 benchmark consists of approximately 25%
loads, 10% stores, 11% branches, 2% jumps, and 52% R-type
instructions. Determine the average CPI for this benchmark or
CPI(M).

Sol:

The average CPl is the sum over each instruction of the CPI
for that instruction multiplied by the fraction of the time
that instruction is used.

For this benchmark, Average CPl = (0.11+ 0.02)(3) + (0.52+
0.10)(4) + (0.25)(5) = 4.12.

This is better than the worst-case CPI of 5, which would be
required if all instructions took the same time. (Single-Cycle)

Therefore, CPI(M)=4.12

Performance Analysis

The design of the multicycle processor is such
that each cycle involved one ALU operation,
memory access, or register file access.

Assume the register file is faster than the
memory and that writing memory is faster than
reading memory.

The Cycle Time is given by:

Tc - rpcq t by ¥ MAXEALY T gy o] T rserup

The numerical values of these times will depend
on the specific implementation technology.

13-03-2020

13

Example PROCESSOR PERFORMANCE
COMPARISON

Is it better building the multicycle processor
instead of the single-cycle processor? For both
designs, a 65 nm CMOS manufacturing process
with the delays given in Table. Compare each
processor’s execution time for 100 billion
instructions from the SPECINT2000 benchmark.

27

e

g Multi-cycle Performance Example
>

]C, Register clock-t0-Q | tyq pc 30
“.| Register setup tetup 20
L‘_ Multiplexer tux 25
I ALU tau 200
U Memory read tem 250
m Register file read tREread 150
g Register file setup | trrgeryp 20
o T.=7

O

—

e
=

13-03-2020

14

13-03-2020

=325 ps

MICROARCHITECTURE

= [30 + 25 + 250 + 20] ps

Chapter

8 Multi-cycle Performance Example
~ Program with 100 billion instructions

Execution Time =2
Program with 100 billion instructions

Chapter 7 <30>

I
=

B

g Multi-cycle Performance Example
>
e~ Element Parameter
U\ Register clock-t0-Q | t,cq pc 30
E Register setup tetup 20
— Multiplexer tux 25
ALU tas 200
U‘ Memory read trem 250
m; Register file read tReread 150
g Register file setup | trrerup 20
i
m Tc = tpcq_PC + 1:mux + max(tALU + thX’ tmem) + tsetup
U‘ = tpcq_PC + toux t toem tsetup
S

Execution Time = (# instructions) x CPI(M) x T,
= (100 x 109)(4.12)(325 x 1012)
=133.9 seconds

This is slower than the single-cycle processor
(92.5 seconds). Why?

15

Comparison

A multi-cycle processor avoids making all instructions
take as long as the slowest one.

But, this example shows that the multicycle processor
is slower than the single-cycle processor .

The fundamental problem is that even though the
slowest instruction, 1w, was broken into five steps, the
multi-cycle processor cycle time was not nearly
improved fivefold.

Not all of the steps are exactly the same length, and
also the 50-ps sequencing overhead of register clk-to-Q
and setup time must now be paid on every step, not
just once for entire instruction.

Comparison

Compared with the single-cycle processor, the
multicycle processor is likely to be less
expensive because it eliminates two adders
and combines the instruction and data
memories into a single unit.

It does, however, require five non-
architectural registers and additional
multiplexers.

13-03-2020

16

13-03-2020

Test your understanding!

1. Analyse the Performance of the MIPS Multi Cycle
Processor.

2. Processor performance comparison using
SPECINT2000 benchmark with same table of
delays for :

(i) 10 lakh instructions
(ii) 10 crore instructions

3. Compare and Contrast the performance of Multi
Cycle processor with Single Cycle processor,
highlighting the pros and cons.

17

3/22/2020

INPUT/OUTPUT (I/0) System

Module V

Based on:
Carl Hamacher “Computer Organization”, MGH

Introduction to 1/O

* Input to a Computer may come from Keyboard,
Mouse, a Touch panel, a Sensor switch, a Digital
camera, a Microphone, or a Fire alarm.

* Qutput may be to a Printer, Sound signal sent to a
Speaker, or a digitally coded command that
changes the speed of a Motor, opens a Valve, or
causes a Robot to move in a specified manner.

* Computers should have the ability to exchange
Digital and Analog information with a wide range
of devices in many different environments.

* |nput/Output (I/0) capability of computers allows
for basic 1/O operations.

3/22/2020

Accessing 1/0 Devices

« The components of a computer system
communicate with each other through an
Interconnection network.

 The Interconnection network consists of
circuits needed to transfer information
between the Processor, the Memory unit,
and a number of 1/O devices.

The Interconnection Network

Processor Memory

Interconnection network

[/O device | LA I/O device n

3/22/2020

Memory-Mapped 1/0

* Each I/O device must appear to the Processor
as consisting of some addressable locations,
just like the Memory.

 Some addresses in the address space of the
Processor are assigned to these |/O locations,
rather than to the main Memory.

 These locations are usually implemented as
bit storage circuits (flip-flops) organized in the
form of Registers known as 1/O Registers.

Memory-Mapped 1/O
* Since the 1I/O devices and the Memory
share the same address space, this
arrangement is called Memory-Mapped
1/0.
* Itis usedin most Computers.

* With Memory-Mapped 1/O, any machine
instruction that can access Memory can
be used to transfer data to or from an 1/O
device.

1/O Device Interface

* One Register may serve as a buffer for data
transfers

* Another may hold information about the current

status of the device,

* Another may store the information that controls
the operational behavior of the device.

* These data, status, and control Registers are
accessed by program instructions as if they were

Memory locations.

» Typical transfers of information are between 1/0

Registers and the Registers in the Processor.

The Connections for Processor, Keyboard and Display

Interconnection network

|

General
purpose
registers

Control
registers

Processor

|

DATA

STATUS

CONTROL

Interface

Keyboard

|

DATA

STATUS

CONTROL

Interface

Display

3/22/2020

Check your understanding!

1. State the various types of Input and Output
devices that need to be used in a modern
General purpose or Embedded Computer, and
provide details how |I/O Capability is provided?

2. Explain how accessing |I/O devices is made
possible in modern Computer, with the aid of a
generic sketch.

3. Explain the relevance of Memory Mapped I/0.

4. State the need for |/O Device Interface and
illustrate with the aid of a diagram the
connections between CPU and I/O devices.

Modes of Data Transfer

Critica

1. Programmed 1/0O

3. Direct Memory Access (DMA)

3/22/2020

Program-Controlled 1/0O

Consider a task that reads characters typed on
a keyboard, stores these data in the Memory,
and displays the same characters on a display
screen.

A simple way of implementing this task is to
write a program that performs all functions
needed to realize the desired action.

This method is known as Program-Controlled
1/0.

Program-Controlled 1/0

It is necessary to ensure that the task happens

at the right time.
An input character must be read in response
to a key being pressed.

For output, a character must be sent to the
display only when the display device is able to
accept it.

The rate of data transfer from the keyboard to
a computer is limited by the typing speed of
the user, which is unlikely to exceed a few
characters per second.

3/22/2020

Program-Controlled 1/0O

The rate of output transfers from the computer to
the display is much higher.

It is determined by the rate at which characters
can be transmitted to and displayed on the
display device, typically several thousand
characters per second.

However, this is still much slower than the speed
of a Processor that can execute billions of
instructions per second.

The difference in speed between the Processor
and 1/0O devices creates the need for mechanisms
to synchronize the transfer of data between
them.

Program-Controlled 1/0O

Program-controlled 1/O requires continuous
involvement of Processor in 1/0O activities.

Almost all of the execution time is spent in
wait loops, while the Processor waits for a key
to be pressed or for the display to become
available.

Wasting the Processor execution time in thic

manner leads to poor efficiency. *‘:‘\ﬁ

It can be avoided by using the concept of
Interrupts.

3/22/2020

Interrupts

In P 1/O , program enters a wait loop in which it
repeatedly tests device status.

During this period, Processor is not performing
any useful computation.

Other tasks can be performed while waiting for
an /O device to become ready.

Arrange for 1I/O device to alert the Processor
when it becomes ready.

It can do so by sending a hardware signal called
an Interrupt Request to the Processor.

Since the Processor is no longer required to
continuously poll the status of 1/0O devices, it can
use the waiting period to perform other useful
tasks.

Interrupts allow wait periods to be eliminated.

Interrupt driven 1/O

The program routine executed in response to an interrupt
request is called the Interrupt-Service Routine (ISR).

Let an interrupt request arrives during execution of
instruction i.

The Processor first completes execution of instruction i.
Then, it loads PC with address of first instruction of ISR.

After execution of the interrupt-service routine, the
Processor returns to instruction i/ + 1.

When an interrupt occurs, current contents of PC, which
point to instruction i + 1, must be put in temporary
storage.

A Return-from-interrupt instruction at the end of the
interrupt-service routine reloads the PC from that
temporary storage location, causing execution to resume
at instruction i+ 1.

The Return address must be saved on the Stack.

3/22/2020

3/22/2020

Transfer of control through use of Interrupts
Program | Program 2

COMPUTE routine DISPLAY routine

R

Interrupt
OCCUTS weeips
here

i+1 - .

Interrupt driven 1/0O

* Processor must inform the device that its request
has been recognized so that it may remove its
Interrupt-Request signal.

* This is done by a special control signal, called
Interrupt Acknowledge, which is sent to device
thro’ the Interconnection network.

* An alternative is to have the transfer of data
between the Processor and the 1/O device
interface accomplish the same purpose.

* The execution of an instruction in the Interrupt-
Service Routine (ISR) that accesses the status or
data Register in the device interface implicitly
informs the device that its Interrupt Request has

been recognized.

Direct Memory Access

Blocks of data are often transferred between
the main Memory and 1/O devices such as
disks without program-controlled intervention
by the Processor.

A special control unit is provided to manage
the transfer, without continuous intervention
by the Processor.

This approach is called Direct Memory
Access, or DMA.

The unit that controls DMA transfers is
referred to as a DMA Controller.

Direct Memory Access

It may be part of the I/O device interface, or it
may be a separate unit shared by a number of |/O
devices.

The DMA Controller performs the functions that
would normally be carried out by the Processor
when accessing the main Memory.

For each word transferred, it provides the
Memory address and generates all the control
signals needed.

It increments the Memory address for successive
words and keeps track of the number of transfers.

3/22/2020

10

DMA Operation

Operation of DMA Controller must be under
the control of a Program executed by the
Processor, usually an OS routine.

To initiate transfer of a block of words,
Processor sends to DMA Controller starting
address, number of words in the block, and
direction of the transfer.

The DMA Controller then proceeds to
perform the requested operation.

When the entire block has been transferred, it
informs the Processor by raising an Interrupt.

DMA Controller Registers

Two Registers are used for storing the Starting
Address and the Word Count.

The third Register contains Status and Control
Flags.

The R/W bit determines the direction of the
transfer.

When this bit is set to 1 by a program instruction,
Controller performs a Read operation, that is, it
transfers data from the Memory to the 1/0
device.

Otherwise, it performs a Write operation.

Additional information is also transferred as may
be required by the I/O device.

3/22/2020

11

3/22/2020

Typical Registers in DMA Controller

31 30 1 0

Status and control
IRQ J |— Done
IE J L R/W

Starting address

Word count

DMA

* When the Controller has completed
transferring a block of data and is ready to
receive another command, it sets the Done
flag to 1.

* Bit 30 is the Interrupt-enable flag, IE.

« When this flag is set to 1, it causes the
controller to raise _an Interrupt after it has
completed transferring a block of data.

* Finally, the Controller sets the IRQ bit to 1
when it has requested an interrupt.

12

Use of DMA controllers in Computer

Processor

. Main
Bridge memory

PCI bus
Disk/DMNMA DMA
controller controller
I Disk I Disk Ethernet
interface

—_

DMA controllers in Computer
One DMA controller connects a high-speed
Ethernet to the computer’s 1/O bus (ex. PCl bus).

The disk controller, which controls two disks, also
has DMA capability and provides two DMA
channels.

It can perform two independent DMA operations,
as if each disk had its own DMA controller.

The Registers needed to store the Memory
address, the word count, and so on, are
duplicated, so that one set can be used with each
disk.

3/22/2020

13

3/22/2020

DMA Transfer

* To start a DMA transfer of a block of data from
the main Memory to one of the disks, an OS
routine writes the address and word count
information _into the Registers of the disk
controller.

e The DMA controller proceeds independently
to implement the specified operation.

 When the transfer is completed, this fact is
recorded in the Status and Control Register of
the DMA channel by setting the Done bit.

DMA Transfer

At the same time, if the IE bit is set, the
Controller sends an Interrupt Request to the
Processor and sets the IRQ bit.

e The Status Register may also be used to
record other information, such as whether the
transfer took place correctly or errors
occurred.

14

Check your understanding!

1. State the modes of /O Data Transfer.
2. Explain Programmed controlled I/O mechanism.

3. Explain Interrupt Driven /O mechanism with the
aid of a diagram.

4. What is DMA? How does it use Interrupts?

5. Explain the DMA Controller Registers with the
aid of diagrams.

6. Describe the DMA transfer with the aid of
diagram and give details of the role of DMA
Controller.

Interface Circuits

* The I/O interface of a device consists of the
circuitry needed to connect that device to the
bus.

* On one side of the interface are the bus lines
for address, data, and control.

* On the other side are the connections needed
to transfer data between the interface and the

|/O device.

* This side is called a Port, and it can be either a
Parallel Port or a Serial Port.

3/22/2020

15

Interface Circuits

A Parallel Port transfers multiple bits of data
simultaneously to or from the device.

e A Serial Port sends and receives data one bit
at a time.

e Communication with the Processor is the
same for both formats.

* The conversion from a Parallel to a Serial
format and vice versa takes place inside the
Interface circuit.

Functions of an 1/O interface

1. Provides a Register for temporary storage of
data.

2. Includes a Status Register containing status info
that can be accessed by Processor.

3. Includes a Control Register that holds info
governing behavior of Interface.

4. Contains Address-decoding Circuitry to
determine when it is being addressed by
Processor.

5. Generates the required Timing signals.

6. Performs any Format conversion that may be
necessary to transfer data between Processor
and 1/O device, such as parallel-to-serial
conversion, in the case of a serial port.

3/22/2020

16

Interconnection Standards

A typical Desktop or Notebook Computer has
several Ports that can be used to connect |/O
devices, such as a Mouse, a Memory key, or a
Disk drive.

Standard interfaces have been developed to
enable I/O devices to use interfaces that are
independent of any particular Processor.

For ex, a pen drive can be used with any
computer that has a USB port.

IEEE (Institute of Electrical and Electronics
Engineers) develops these standards further
and publishes them as IEEE Standards.

Universal Serial Bus (USB)

Universal Serial Bus (USB) is the most
widely used interconnection standard.

A large variety of devices are available with
a USB connector, including Mice, Memory
keys, Disk drives, Printers, Cameras, and
many more.

The commercial success of the USB is due
to its simplicity and low cost.

3/22/2020

17

Universal Serial Bus (USB)

 The original USB specification supports two
speeds of operation, called low-speed (1.5
Megabits/s) and full-speed (12 Megabits/s).

e Later, USB 2, called High-Speed USB, was
introduced.

* |t enables data transfers at speeds up to 480
Megabits/s.

* As I/O devices continued to evolve with even
higher speed requirements, USB 3 (called
Super-speed) was developed. It supports data
transfer rates up to 5 Gigabits/s.

Objectives of the USB

e Provide a simple, low-cost, and easy to use
interconnection system.

e Accommodate a wide range of |/O devices and
bit rates, including Internet connections, and
audio and video applications.

e Enhance user convenience through a “plug-
and-play” mode of operation.

3/22/2020

18

PCl Bus

The PCI (Peripheral Component Interconnect)
bus was developed as a low-cost, Processor-
independent bus.

It is on the motherboard of a computer and
used to connect I/O interfaces for a wide
variety of devices.

A device connected to the PCl bus appears to
the Processor as if it is connected directly to
the Processor bus.

Its interface Registers are assigned addresses
in the address space of the Processor.

Bus Structure

The PCI bus is connected to the Processor bus
via a controller called a Bridge.

The Bridge has a special port for connecting
the computer’s Main Memory.

It may also have another special high speed
port for connecting graphics devices.

The Bridge translates and relays commands
and responses from one bus to the other and
transfers data between them.

3/22/2020

19

3/22/2020

Processor

Graphics PCI bridge Main
memory
PCI bus
SATA, SAS Ethernet
or SCSI USB hub
controller | |
Disk Printer Mouse Keyboard
controller

Disk

Use of a PCl bus in a Computer
System

Advantages and Benefits

The PClI bus has gained great popularity,
particularly in the PC world.

It is also used in many other computers, to
benefit from the wide range of |/O devices for
which a PCl interface is available.

Both a 32-bit and a 64-bit configuration are
available, using either a 33-MHz or 66-MHz clock.

A high-performance variant known as PCI-X is
also available.

It is a 64-bit bus that runs at 133 MHz.

Yet higher performance versions of PCI-X run at
speeds up to 533 MHz.

20

scuzzi

SCSI Bus

The acronym SCSI stands for Small Computer System
Interface .

It refers to a standard bus defined by the American
National Standards Institute (ANSI).

The SCSI bus may be used to connect a variety of
devices to a computer.

It is particularly well-suited for use with disk drives.

It is often found in installations such as institutional
databases or email systems where many disks drives
are used.

In the original specifications of the SCSI standard,
devices are connected to a computer via a 50-wire
cable, which can be up to 25 meters in length and can
transfer data at rates of up to 5 Megabytes/s.

SCSI Bus

The standard has undergone many revisions, and
its data transfer capability has increased rapidly.

SCSI-2 and SCSI-3 have been defined, and each
has several options.

Data are transferred either 8 bits or 16 bits in
parallel, using clock speeds of up to 80 MHz.
There are also several options for the electrical
signaling scheme used.

The bus may use single-ended transmission,
where each signal uses one wire, with a common
ground return for all signals.

In another option, differential signaling is used,
with a pair of wires for each signal.

3/22/2020

21

N

Data Transfer over SCSI bus

Devices connected to SCSI bus are not part of
address space of Processor in the same way as
devices connected to the Processor bus or to the
PCl bus.

A SCSI bus may be connected directly to
Processor bus, or more likely to another standard
I/O bus such as PCl, through a SCSI controller.

Data and commands are transferred in the form
of multi-byte messages called packets.

To send commands or data to a device, Processor
assembles the info in Memory then instructs SCSI
controller to transfer it to the device.

Similarly, when data are read from a device, SCSI
controller transfers the data to Memory and then
informs Processor by raising an Interrupt.

Example: Read operation.

Assume that the Processor wishes to read a block of data
from a disk drive and that these data are stored in two disk
sectors that are not contiguous.

The Processor sends a command to the SCSI controller,
which causes the following sequence of events to take
place: 2>

. The SCSI controller contends for control of the SCSI bus.

. When it wins the arbitration process, the SCSI controller
sends a command to the disk controller, specifying the
required Read operation.

The disk controller cannot start to transfer data
immediately. It must first move the read head of the disk
to the required sector. Hence, it sends a message to the
SCSI controller indicating that it will temporarily suspend
the connection between them. The SCSI bus is now free to
be used by other devices.

3/22/2020

22

4. The disk controller sends a command to the disk drive
to move the read head to the first sector involved in
the requested Read operation. It reads the data stored
in that sector and stores them in a data buffer. When it
is ready to begin transferring data, it requests control
of the bus. After it wins arbitration, it re-establishes
the connection with the SCSI controller, sends the
contents of the data buffer, then suspends the

5.

6. The SCSI controller transfers the requested data to the
main Memory and sends an interrupt to the Processor

1
2

3.

4.

5.

Example: Read operation (Cont...)

connection again.

contents of the second disk sector.

indicating that the data are now available.

Check your understanding!

. What is a Port and what are the types? Explain.
. Explain functions of I/O Interface.

connections?
details of the standard.

advantages and benefits.

typical read operation.

The process is repeated to read and transfer the

What is the need for a standard for 1I/O device
Describe the objectives of USB and provide technical
Describe PCl Bus with the aid of diagram and give its

Investigate the SCSI Bus and how its serves the
purpose of efficient data transfer, with details of a

3/22/2020

23

Memory System

Module V Part-B

Pyramid Memory Hierarchy

Smaller,
faster, } CPU registers hold words retrieved
and from L1 cache
costlier L1/ on-chip L1
(per byte) cache (SRAM) } L1 cache holds cache lines retrieved
storage from the L2 cache memory
devices Lz/ off-chip L2
cache (SRAM)] L2 cache holds cache lines
retrieved from main memory
L3: main memory
Larger, (DRAM) Main momory holds disk
slower, block vdr:vvod from local
and disks
cheaper L4: local secondary storage
(per byte) (local disks)
storage Local disks hold tiles
devices] retrieved from disks on
remote network servers
Ls: remote secondary storage

(distributed file systems, Web servers)

22-03-2020

22-03-2020

Memory Hierarchy

Computer Memory comprise of Primary Memory
and Secondary Memory with different types.

All the different types of Memory units are
employed effectively in a Computer System.

The entire Computer Memory can be viewed as
the Memory Hierarchy.

The fastest access is to data held in Processor
Registers (Level LO).

So the Processor Registers are at the top of
Hierarchy in terms of speed of access.

But, the Registers provide only a very small
portion of the required Memory.

Memory Hierarchy

At the next level of Hierarchy is a relatively small amount
of Memory directly on Processor chip.

This Memory, called a Processor Cache, holds copies of
instructions and data stored in a much larger Memory
that is provided externally.

There are often two or more levels of Cache.
A Primary Cache is always located on Processor chip.

This Cache is small and its access time is comparable to
that of Processor Registers.

The primary Cache is referred to as the Level 1 (L1) Cache.

A larger, and hence somewhat slower, Secondary Cache is
placed between the Primary Cache and the rest of the
Memory.

It is referred to as the Level 2 (L2) Cache.
Often, the L2 Cache is not on the Processor chip.

Memory Hierarchy

The next level in the Hierarchy is the Main
Memory.

This is a large Memory implemented using
Dynamic Memory components, typically
assembled in Memory modules such as SIMMs
and DIMMis (Dual In-line Memory Module).

The Main Memory is much larger but significantly
slower than Cache memories.

In a Computer with a Processor clock of 2 GHz or
higher, access time for Main Memory can be as
much as 100 times longer than access time for
the L1 Cache.

Memory Hierarchy

Disk devices and Tape devices and optical storage
provide a very large amount of inexpensive Memory,
and they are widely used as local Secondary Storage in
computer systems. (Level-L5)

They are very slow compared to the Main Memory.

Remote Secondary Storage include Distributed File
Systems and Web Servers. (Level-L5)

They represent the bottom level in the Memory
Hierarchy.

Cost per bit of storage is the least at the bottom and
very high at the top!

Mostly Electromechanical devices and effectively
provide an “Ocean” of storage that project the small
“Pool” of top most layer!!

22-03-2020

Characteristics of Memory

An ideal Memory would be fast, large, and
inexpensive.

A very fast Memory can be implemented using Static
RAM chips.

But, these chips are not suitable for implementing
large memories, because their basic cells are larger
and consume more power than Dynamic RAM cells.

Although Dynamic Memory units with Gigabyte
capacities can be implemented at a reasonable cost,
the affordable size is still small compared to the
demands of large programs with voluminous data.

A solution is provided by using Secondary Storage,
mainly Magnetic disks, to provide the required
Memory space.

Characteristics of Memory (Cont...)

Disks are available at a reasonable cost, and they are used
extensively in computer systems.

However, they are much slower than semiconductor
Memory units.

A very large amount of cost-effective storage can be
provided by magnetic disks, and a large and considerably
faster, yet affordable, main Memory can be built with
dynamic RAM technology.

This leaves the more expensive and much faster Static RAM
technology to be used in smaller units where speed is of
the essence, such as in Cache Memories.

During program execution, the speed of Memory access is
of utmost importance.

The key to managing the operation of the Hierarchical
Memory system is to bring the instructions and data that
are about to be used as close to the processor as possible.

This is the main purpose of using Cache Memories.

22-03-2020

Semiconductor RAM Memories

Semiconductor Random-Access Memories
(RAMs) are available in a wide range of
speeds.

Their cycle times range from 100 ns to less
than 10 ns.

Static Memories

Memories that consist of circuits capable of retaining
their state as long as power is applied are known as
Static Memories.

Static RAM (SRAM) cell may be implemented as two
inverters cross-connected to form a latch.

The latch is connected to two bit lines by transistors T1
and T2.

These transistors act as switches that can be opened or
closed under control of the word line.

When the word line is at ground level, the transistors
are turned off and the latch retains its state.

For example, if the logic value at point X is 1 and at
point Y is 0, this state is maintained as long as the
signal on the word line is at ground level.

Assume that this state represents the value 1.

22-03-2020

22-03-2020

Static RAM Cell
9

Y

A

Word line

Bit lines

Static RAM Cell using CMOS Transistors
b b

Vsupp[y

I

X

Word line

Bit lines

Static RAM Cell using CMOS Transistors

Continuous power is needed for cell to retain its state.
If power is cut off, cell’s contents are lost.
On power ON, latch settles into a new stable state.

Hence, SRAMs are said to be volatile memories
because their contents are lost when power is cut.

A major advantage of CMOS SRAMs is their very low
power consumption, because current flows in the cell
only when the cell is being accessed.

Otherwise, T1, T2, and one transistor in each inverter
are turned off, ensuring that there is no continuous
electrical path between V,,,,,, and ground.

Static RAMs can be accessed very quickly.

Access times on the order of a few nanoseconds are
found in commercially available chips.

SRAMs are used in applications where speed is of
critical concern.

Dynamic RAM

Static RAMs are fast, but their cells require several
transistors.

Less expensive and higher density RAMs can be
implemented with simpler cells.

But, these simpler cells do not retain their state for a long
period, unless they are accessed frequently for Read or
Write operations.

Memories that use such cells are called dynamic RAMs
(DRAMS).

Information is stored in a dynamic Memory cell in the form
of a charge on a capacitor, but this charge can be
maintained for only tens of milliseconds.

Since the cell is required to store information for a much
longer time, its contents must be periodically refreshed by
restoring the capacitor charge to its full value.

This occurs when the contents of the cell are read or when
new information is written into it.

22-03-2020

Dynamic RAM Cell
Bit line

Word line

|1
1
A

Dynamic RAM

An example of a dynamic Memory cell consists of
a capacitor, C, and a transistor, T.

To store information in this cell, transistor T is
turned on and an appropriate voltage is applied
to the bit line.

This causes a known amount of charge to be
stored in the capacitor.

After the transistor is turned off, the charge
remains stored in the capacitor, but not for long.

The capacitor begins to discharge.

This is because the transistor continues to
conduct a tiny amount of current, measured in
pA, after it is turned off.

22-03-2020

Dynamic RAM

Hence, the information stored in the cell can be
retrieved correctly only if it is read before the charge
in the capacitor drops below some threshold value.

During a Read operation, the transistor in a selected
cell is turned on.

A sense amplifier connected to the bit line detects
whether the charge stored in the capacitor is above
or below the threshold value.

If the charge is above the threshold, the sense
amplifier drives the bit line to the full voltage
representing the logic value 1.

Dynamic RAM

As a result, the capacitor is recharged to the full
charge corresponding to the logic value 1.

If the sense amplifier detects that the charge in
the capacitor is below the threshold value, it pulls
the bit line to ground level to discharge the
capacitor fully.

Thus, reading the contents of a cell automatically
refreshes its contents.

Since the word line is common to all cells in a
row, all cells in a selected row are read and
refreshed at the same time.

22-03-2020

22-03-2020

Internal organization of a 32M x 8 dynamic Memory chip.

Cell array
i:> ’l{‘l‘“ :> Row R 16,384 rows
o *SS
Jatch decoder | by
JiL .)
2.048 bytes
Ay_11/Ay-0 = S cS
cireunts R/W
Colu <
|:l:||lu|-l\"\l > Column
‘ decoder

latch

(_\s41 II)-W|!

32M x 8 Dynamic Memory chip

* A 256-Megabit DRAM chip, configured as 32M x 8, is shown.
* The cells are organized in the form of a 16K x 16K array.

* The 16,384 cells in each row are divided into 2,048 groups of 8,
forming 2,048 bytes of data.

* Therefore, 14 address bits are needed to select a row, and another
11 bits are needed to specify a group of 8 bits in the selected row.

* Intotal, a 25-bit address is needed to access a byte in this Memory.

* The high-order 14 bits and the low-order 11 bits of the address
constitute the row and column addresses of a byte, respectively.

* To reduce the number of pins needed for external connections, the
row and column addresses are multiplexed on 14 pins.

* During a Read or a Write operation, the row address is applied first.

* |t is loaded into the row address latch in response to a signal pulse
on an input control line called the Row Address Strobe (RAS).

* This causes a Read operation to be initiated, in which all cells in the
selected row are read and refreshed.

10

32M x 8 Dynamic Memory chip

Shortly after the row address is loaded, the column address is
applied to the address pins and loaded into the column address
latch under control of a second control line called the Column
Address Strobe (CAS).

The information in this latch is decoded and the appropriategroup
of 8 Sense/Write circuits is selected.

If the R/W control signal indicates a Read operation, the output
values of the selected circuits are transferred to the data lines,
D7-0.

For a Write operation, the information on theD7-0 lines is
transferred to the selected circuits, then used to overwrite the
contents of the selected cells in the corresponding 8 columns.

Note that in commercial DRAM chips, the RAS and CAS control
signals are active when low.

Hence, addresses are latched when these signals change from high
to low.

The signals are shown in diagrams as RAS and CAS to indicate this
fact.

Asynchronous DRAMs

The timing of the operation of the DRAM
described above is controlled by the RAS and CAS
signals.

These signals are generated by a Memory
controller circuit external to the chip when the
processor issues a Read or aWrite command.

During a Read operation, the output data are
transferred to the processor after a delay
equivalent to the Memory’s access time.

Such memories are referred to as Asynchronous
DRAM:s.

22-03-2020

11

Synchronous DRAMs

In the early 1990s, developments in Memory
technology resulted in DRAMs whose operation is
synchronized with a clock signal.

Such memories are known as synchronous DRAMs
(SDRAMs).

The cell array is the same as in asynchronous DRAMs.
The distinguishing feature of an SDRAM is the use of a
clock signal, the availability of which makes it possible
to incorporate control circuitry on the chip that
provides many useful features.

For example, SDRAMs have built-in refresh circuitry,
with a refresh counter to provide the addresses of the
rows to be selected for refreshing.

As a result, the dynamic nature of these Memory chips
is almost invisible to the user.

Synchronous DRAMs

Synchronous DRAM scan deliver data at a very high
rate, because all the control signals needed are
generated inside the chip.

The initial commercial SDRAMs in the 1990s were
designed for clock speeds of up to 133 MHz.

As technology evolved, much faster SDRAM chips were
developed.

Today’s SDRAMs operate with clock speeds that can
exceed 1 GHz.

Chips are manufactured in different organizations, to
provide flexibility in designing Memory systems.

For example, a 1-Gbit chip may be organized as 256M x
4,0r 128M x 8.

22-03-2020

12

=

uhwnN

o

SIMMs and DIMMs

Packaging considerations have led to the development of
assemblies known as Memory modules.

Each such module houses many Memory chips, typically in
the range 16 to 32, on a small board that plugs into a socket
on the computer’s motherboard.

Memory modules are commonly called SIMMs (Single In-
line Memory Modules) or DIMMs (Dual In-line Memory
Modules), depending on the configuration of the pins.

Modules of different sizes are designed to use the same
socket.

For example, 128M x 64, 256M x 64, and 512M x 64 bit
DIMM s all use the same 240-pin socket.

Thus, total Memory capacity is easily expanded by
replacing a smaller module with a larger one, using the
same socket.

Check your understanding!

Investigate Memory Hierarchy with the aid of a
diagram and provide details of the different layers.

Explain the characteristics of Memory.
Describe Static Memories with the aid of diagrams.
Describe Dynamic RAM with the aid of a diagram.

Provide the internal organization of a Dynamic
Memory Chip with a diagram.

Compare and Contrast Asynchronous and
Synchronous DRAMs.

Explain the relevance of SIMMs and DIMMs in
modern Computer Systems.

22-03-2020

13

Read-only Memories

Both Static and dynamic RAM chips are Volatile Memory,
which means that they retain information only while power
is turned on.

There are many applications requiring Memory devices that
retain the stored information when power is turned off.

So there is need to store a small program in such a
Memory, to be used to start the bootstrap process of
loading the operating system from a hard disk into the main
Memory.

Many embedded applications do not use a hard disk and
require Nonvolatile Memories to store their software.
Generally, their contents can be read in the same way as for
volatile Memories.

But, a special writing process is needed to place the
information into a Nonvolatile Memory.

Since its normal operation involves only reading the stored

data, a Memory of this type is called a Read-only Memory
(ROM).

A ROM Cell

Bit line

Word line

Connected to store a 0
P - —
Not connected to store a |

22-03-2020

14

Read- Only Memory (ROM)

Information can be written into it only once at the time of
manufacture.

A logic value 0 is stored in the cell if the transistor is
connected to ground at point P; otherwise, a 1 is stored.

The bit line is connected thro’ a resistor to power supply.

To read state of cell, word line is activated to close the
transistor switch.

As a result, the voltage on the bit line drops to near zero, if
there is a connection between the transistor and ground.

If there is no connection to ground, the bit line remains at
the high voltage level, indicating a 1.

A sense circuit at the end of the bit line generates the
proper output value.

The state of the connection to ground in each cell is
determined when the chip is manufactured, using a mask
with a pattern that represents the information to be stored.

PROM

Some ROM designs allow the data to be loaded by the
user, thus providing a programmable ROM (PROM).

Programmability is achieved by inserting a fuse at point
P.

Before it is programmed, the memory contains all Os.

The user can insert 1s at the required locations by
burning out the fuses at these locations using high-
current pulses.

This process is irreversible.

PROMs provide flexibility and convenience not
available with ROM:s.

The cost of preparing the masks needed for storing a
particular information pattern makes ROMs cost
effective only in large volumes.

Memory chips can be programmed directly by the user.

22-03-2020

15

EPROM

It allows the stored data to be erased and new data
to be written into it.

Such an Erasable, Reprogrammable ROM is usually
called an EPROM.

It provides considerable flexibility during
development phase of digital systems.

Since EPROMs are capable of retaining stored
information for a long time, they can be used in place
of ROMs or PROMs while software is being
developed.

An EPROM cell has a structure similar to the ROM
cell.

EPROM

However, the connection to ground at point P is
made through a special transistor.

The transistor is normally turned off, creating an
open switch.

It can be turned on by injecting charge into it that
becomes trapped inside.

Thus, an EPROM cell can be used to construct a
memory in the same way as the ROM cell.

Erasure requires dissipating the charge trapped in
the transistors that form the memory cells.

This can be done by exposing the chip to ultraviolet
light, which erases the entire contents of the chip.

To make this possible, EPROM chips are mounted in
packages that have transparent windows.

22-03-2020

16

EEPROM

An EPROM must be physically removed from the circuit for
reprogramming.
Also, the stored information cannot be erased selectively.

The entire contents of the chip are erased when exposed to
ultraviolet light.

Another type of erasable PROM can be programmed, erased, and
reprogrammed electrically.

Such a chip is called an Electrically Erasable PROM, or EEPROM.
It does not have to be removed for erasure.
Moreover, it is possible to erase the cell contents selectively.

One disadvantage of EEPROMSs is that different voltages are
needed for erasing, writing, and reading the stored data, which
increases circuit complexity.

They have replaced EPROMs in practice due to their advantages.

Flash

* An approach similar to EEPROM technology has given
rise to flash memory devices.

* A flash cell is based on a single transistor controlled by
trapped charge, much like an EEPROM cell.

* Also like an EEPROM, it is possible to read the contents
of a single cell.

* The key difference is that, in a flash device, it is only
possible to write an entire block of cells.

* Prior to writing, the previous contents of the block are
erased.

* Flash devices have greater density, which leads to
higher capacity and a lower cost per bit.

* They require a single power supply voltage, and
consume less power in their operation.

22-03-2020

17

Flash

The low power consumption of flash memories
makes them attractive for use in portable,
battery-powered equipment.

Typical applications include hand-held
computers, cell phones, digital cameras, and MP3
music players.

In hand-held computers and cell phones, a flash
memory holds the software needed to operate
the equipment, thus obviating the need for a disk
drive.

A flash memory is used in digital cameras to store
picture data.

In MP3 players, flash memories store the data
that represent sound.

Flash Cards

One way of constructing a larger module is to mount
flash chips on a small card.

Such flash cards have a standard interface that makes
them usable in a variety of products.

A card is simply plugged into a conveniently accessible
slot.

Flash cards with a USB interface are widely used and
are commonly known as memory keys.

They come in a variety of memory sizes.
Larger cards may hold as much as 32 GBytes.

A minute of music can be stored in about 1 MByte of
memory, using the MP3 encoding format.

Hence, a 32-GByte flash card can store approximately
500 hours of music.

22-03-2020

18

Flash Drives

Larger flash memory modules have been
developed to replace hard disk drives, and
hence are called flash drives.

They are designed to fully emulate hard disks,
to the point that they can be fitted into
standard disk drive bays.

However, the storage capacity of flash drives is
significantly lower.

Currently, the capacity of flash drives is on the
order of 64 to 128 GBytes.

Flash Drives

In contrast, hard disks have capacities exceeding a
Terabyte.

Also, disk drives have a very low cost per bit.

The fact that flash drives are solid state electronic
devices with no moving parts provides important
advantages over disk drives.

They have shorter access times, which result in a
faster response.

They are insensitive to vibration and they have
lower power consumption, which makes them
attractive for portable, battery-driven
applications.

22-03-2020

19

22-03-2020

Check your understanding!

1. Compare and Contrast RAM and ROM by
providing their inherent characteristics and
differences.

2. With the aid of a diagram, explain the ROM
Cell.

3. Explain PROM, EPROM and EEPROM.
4. Describe Flash memory and Flash Cards.

5. Compare and Contrast Flash Drives and Hard
Disk Drives.

20

Cache Memory
AND
Virtual Memory

MODULE VI
EC206 CO

Principles of Locality

@ Memory hierarchies work because well written
programs tend to exhibit good locality.

@ They tend to reference data items that are near
other recently referenced data items.

@ Or that they were recently referenced themselves.

@ Known as the Principal of Locality.

23-03-2020

23-03-2020

Principles of Locality

@ Locality has two distinct forms:

@ Temporal locality — a memory location that is
referenced once is likely to be referenced again
multiple times in the near future.

@ Spatial locality — if a memory location is referenced
once then the program is likely to reference a
nearby location in the near future.

Exploiting Locality

@ All levels of modern computer systems are designed
to exploit locality:

@ data to be stays in the higher and faster levels of
memory.

@ At the hardware level - speed up main memory
accesses.

@ At the operating system level — use main memory
to cache the most recently used disk blocks.

Spoe e

Exploiting Locality

@ By implication:

@ Memory devices at the next level of the hierarchy can be
slower and thus larger and cheaper per bit.

@ The overall effect is:

@ A large pool of memory that costs as much as the cheap
storage (cents/bit) near the bottom of hierarchy.

@ A memory system that serves data to the CPU at the rate
of the fast memory devices near the top of the hierarchy.

Technology | CostiGB | Access Time
SRAM | - 10,000 ~1ns
Cace NemoryBerarhy
DRAM [-§00 |- 100ms companents, with typica
M Memory characteristis in 2006
Hard Disk | ~§1 | ~10000,000ng
Virtual Memory
Capacy .

23-03-2020

Locality of Reference

Property of well written Computer Programs.

Analysis of Programs shows that most of their
execution time is spent in routines in which many
instructions are executed repeatedly.

These instructions may constitute a simple loop,
nested loops, or a few procedures that repeatedly call
each other.

Many instructions in localized areas of Program are
executed repeatedly during some time period.

This behavior manifests itself in two ways:
Temporal and Spatial.

Temporal means that a recently executed instruction is
likely to be executed again very soon.

The Spatial aspect means that instructions close to a
recently executed instruction are also likely to be
executed soon.

Cache Memories

Cache is a small and very fast Memory, placed
between the Processor and the Main Memory.

Temporal locality suggests that whenever an
instruction or data, is first needed, this item
should be brought into Cache, as it is likely to be
needed again soon.

Spatial locality suggests that instead of fetching
just one item from Main Memory to Cache, it is
useful to fetch several items that are located at
adjacent addresses as well.

The term Cache Block refers to a set of
contiguous address locations of some size.

Another term that is often used to refer to a
Cache block is a Cache Line.

23-03-2020

23-03-2020

Cache Organisation

Main store

Hit Typically |M ~ 64M bytes

— Typically 8K = 512K bytes

Concept of Cache Memory

* When Processor issues a Read request,
contents of a block of Memory words with
location specified are transferred into Cache.

e Later, when Program references any of the
locations in this block, the desired contents
are read directly from the Cache.

» Usually, Cache Memory can store a reasonable
no: of blocks at any given time, but this
number is small compared to total no: of
blocks in Main Memory.

Cache Managment

@ A cache controller checks if memory data is already in the
cache.

e [fitis, (a cache hit), the processor is spared a time
consuming access to the main memory.

@ [f not, (a cache miss), a block of main memory containing the

data is fetched and written into the cache to replace least
recently used data.

® A 512 KB cache, caching 64 MB of system memory can
register a ‘hit’ on over 90% of requests.

Cache Hits
Processor issues Read and Write requests
using addresses that refer to locations in
Memory.

The Cache controller determines whether
requested word currently exists in Cache.

If it does, the Read or Write operation is
performed on the appropriate Cache location.

A read or write Cache Hit is said to have
occurred.

The Main Memory is not involved when there
is a Cache hit in a Read operation.

23-03-2020

23-03-2020

Write-through

* For a Write operation, the system can proceed in
one of two ways.

* In the first technique, called the Write-through
protocol, both the Cache location and the Main
Memory location are updated.

Write-back, or Copy-back
* The second technique is to update only Cache
location and to mark the block containing it

with an associated flag bit, called the dirty or
modified bit.

* Main Memory location of word is updated
later, when block containing this marked word
is removed from Cache to make room for a
new block.

* This technique is known as the write-back, or
copy-back.

Comparison

The write-through protocol is simpler than write-
back protocol, but it results in unnecessary Write
operations in Main Memory when a given Cache
word is updated several times during its Cache
residency.

The write-back protocol also involves
unnecessary Write operations, as all words of
block are eventually written back, even if only a
single word has been changed while block was in
Cache.

The write-back protocol is used most often, to
take advantage of the high speed with which data
blocks can be transferred to Memory chips.

Cache Miss

A Read operation for a word that is not in the
Cache constitutes a Read Cache Miss.

It causes the block of words containing the
requested word to be copied from Main Memory
into Cache.

After the entire block is loaded into Cache, the
particular word requested is forwarded to
Processor.

When a Write Cache Miss occurs using the write-
through protocol, information is written directly
into Main Memory.

For write-back protocol, block containing the
addressed word is first brought into Cache, and
then desired word in Cache is overwritten with
the new information.

23-03-2020

23-03-2020

Memory SYSTEM PERFORMANCE
ANALYSIS
* Memory system performance metrics are miss

rate or hit rate and average Memory access
time.

* Miss and hit rates are calculated as:

Number of misses

Mizs Rate = = 1 — Hit Rate

Number of total memory accesses

. Number of hits .
Hit Rate = — - / = 1 — Miss Rate
Number of total memory accesses

Ex: 1 CALCULATE CACHE PERFORMANCE

Suppose a program has 2000 data access
instructions (loads or stores), and 1250 of these
requested data values are found in the cache.

The other 750 data values are supplied to the
Processor by Main Memory or disk Memory.

What are the miss and hit rates for the cache?

Sol:

The miss rate is 750/2000 = 0.375 = 37.5%.

The hit rate is 1250/2000= 0.625 1- 0.375= 62.5%.

23-03-2020

Average Memory Access Time (AMAT)

It is average time a Processor must wait for Memory
per load or store instruction.

* The Processor first looks for data in the cache.

* |f the cache misses, Processor then looks in Main
Memory.

* If Main Memory misses, Processor accesses
VirtualMemory on hard disk.

* Thus, AMAT is calculated as:

AMAT = fache + MEacheltmm + MR pmtva)

* where t_ o, tyw, and t,, are the access times of cache,
Main Memory, and VirtualMemory, and MR, and
MR,,,, are cache and Main Memory miss rates,
respectively.

Ex: 2 CALCULATING AMAT

Suppose a computer system has a Memory
organization with only two levels of hierarchy, a
cache and Main Memory.

What is the average Memory access time given
the access times and miss rates?

Memory Access Time Miss
Level {Cycles) Bate
Cache 1 102
Main Memory 100 D%
Sol: :
The average Memory access time is 1 + 0.1(100)=
11 cycles.

10

23-03-2020

Ex 3 IMPROVING ACCESS TIME

An 11-cycle average Memory access time means
that the Processor spends ten cycles waiting for
data for every one cycle actually using that data.

What cache miss rate is needed to reduce the
average Memory access time to 1.5 cycles? (Use
previous ex data)

Sol:

If the miss rate is m, the average access time is
1+ 100m.

1+ 100m =1.5 - m=0.5/100 = 0.005.
Cache miss rate = 0.5%

Mapping and Replacement
The correspondence between Main Memory
blocks and those in Cache is specified by
Mapping Method.

When Cache is full and a Memory word that is
not in Cache is referenced, Cache controller
must decide which block should be removed
to create space for new block that contains
referenced word.

The collection of rules for making this decision
constitutes Cache’s Replacement algorithms.

11

23-03-2020

Mapping Methods

e There are three methods to determine
where Memory blocks are placed in
Cache.

e Consider a Cache consisting of 128 blocks
of 16 words each, for a total of 2048 (2K)
words, and assume that Main Memory is
addressable by a 16-bit address.

 The Main Memory has 64K words, as 4K
blocks of 16 words each.

Direct Mapping
The simplest way to determine Cache locations in
which to store Memory blocks is the Direct-
mapping technique.
In this technique, block j of Main Memory maps
onto block j modulo 128 of Cache.

Thus, whenever one of Main Memory blocks O,
128, 256, . . . is loaded into Cache, it is stored in
Cache block 0.

Blocks 1, 129, 257, . .. are stored in Cache block
1, and so on.

12

memory

Block 0

Block 1

Direct Mapped Cache

Cache Block 127
Block 0 Block 128

Block 1 Block 129

Block 127 Block 255

Block 256

Block 257

Block 4095
Tag Block Word

I 5 I 7 I 4 I Main memory address

Since more than one Memory block is mapped
onto a given Cache block position, Contention

may arise for that position even when the
Cache is not full.

For ex, instructions of a program may start in
block 1 and continue in block 129, after a
branch.

As this program is executed, both of these
blocks must be transferred to the block-1
position in Cache.

Contention is resolved by allowing new block
to overwrite currently resident block.

23-03-2020

13

With direct mapping, replacement algorithm is
simple.

Placement of a block in Cache is determined by
its Memory address.

The Memory address can be divided into three
fields.

The low-order 4 bits select one of 16 words in a
block.

When a new block enters the Cache, 7-bit Cache
block field determines Cache position in which
this block must be stored.

The high-order 5 bits of the Memory address of
the block are stored in 5 tag bits associated with
its location in Cache.

The tag bits identify which of 32 Main Memory
blocks mapped into this Cache position is
currently resident in Cache.

As execution proceeds, 7-bit Cache block field
of each address generated by Processor points
to a particular block location in Cache.

High-order 5 bits of address are compared
with tag bits associated with that Cache
location.

If they match, then desired word is in that
block of Cache.

If there is no match, then block containing
required word must first be read from Main
Memory and loaded into Cache.

The direct-mapping technique is easy to
implement, but it is not very flexible.

23-03-2020

14

Associative Mapping

M('\e/lﬁa%'c?ry
Cache
[tag | Block 1
1 L </
Tag Word
| 12 [4

Main Memory address

I Block O .

Block 1

Block 129

Block 256
Block 257

il 1

=

Associative Mapping
e Main Memory block can be placed into any cache

position.

e Memory address is divided into two fields:
- Low order 4 bits identify the word within a

block.

- High order 12 bits or tag bits identify a Memory
block when it is resident in the cache.
* Flexible, and uses cache space efficiently.

e Replacement algorithms can be

used to replace

an existing block in the cache when the cache is

full.

e Cost is higher than direct-mapped cache because
of the need to search all 128 patterns to
determine whether a given block is in the cache.

23-03-2020

15

23-03-2020

Set Associative Mapping with 2 Blocks /Set

Main
MEmory

Block O

Block |1

Cache
Set 0 <{ Block O
[taz | Block 1

Block 2

Block 63

Block 64

Block 65

tag

Block 3

7]
-
—h—
g
¥
\ I
\

Tz Block 127
Set 63 — Block 126
el

Block 128

Block 129

i
{

Block 127

I

Block 4095

Tag Set Wiord

I 6 I & I 4 I Main memory address

Set Associative Mapping

* Blocks of cache are grouped into sets.

* Mapping function allows a block of the Main Memory to
reside in any block of a specific set.

* Divide the cache into 64 sets, with two blocks per set.

* Memory block 0, 64, 128 etc. map to block 0, and they can
occupy either of the two positions.

* Memory address is divided into three fields:
- 6 bit field determines the set number.

- High order 6 bit fields are compared to tag fields of two
blocks in a set.

* Set-associative mapping is combination of direct and
associative mapping.

* Number of blocks per set is a design parameter.

- One extreme is to have all the blocks in one set, requiring
no set bits (fully associative mapping).

- Other extreme is to have one block per set, is same as
direct mapping.

16

Write Buffer
Write-through:

e Each write operation involves writing to the Main Memory.

¢ |f the Processor has to wait for the write operation to be
complete, it slows down the Processor.

* Processor does not depend on the results of the write
operation.

e Write buffer can be included for temporary storage of
write requests.

e Processor places each write request into the buffer and
continues execution.

¢ |f a subsequent Read request references data which is still
in the write buffer, then this data is referenced in the
write buffer.

Write-back:

e Block is written back to the Main Memory when it is
replaced.

e |f the Processor waits for this write to complete, before
reading the new block, it is slowed down.

¢ Fast write buffer can hold the block to be written, and the
new block can be read first.

Replacement Algorithms

e First-in, First-out(FIFO): Evict the
block that has been in the cache the
longest

 Least recently used (LRU): Evict the
block whose last request occurred
furthest in the past.

e Random: Choose a block at random
to evict from the cache.

23-03-2020

17

23-03-2020

New block

Random policy: % [;

Old block (chosen at random)

New block old block(present longest)

FIFO policy: -i

Insert time: 8:00 am 7:48am 9:05am 7:10am 7:30 am 10:10am 8:45am

- /.

last used: 7:25am 8:12am 9:22am 6:50am 8:20am 10:02am 9:50am

New block

Old block(least recently used)

LRU policy:

The Random, FIFO, and LRU Block replacement .

Complexity of implement(Random)

* |t only requires a random or pseudo-
random number generator.

* Overhead is an O(1) additional
amount of work per replacement.

* Makes no attempt to take advantage
of any temporal or spatial localities.

36

18

Complexity of implement(FIFO)

* FIFO strategy just requires a queue Q to
store references to blocks in cache

* Blocks are enqueuedin Q

» Simply performs a dequeue operation on
Q to determine which Block to evict.

* This policy requires O(1) additional work
per block replacement

* Try to take advantage of temporal locality

Complexity of implement(LRU)
* Implementing the LRU strategy requires the

use of a priority queue Q

* When insert a Block in Q or update its key,
the Block is assigned the highest key in Q

* Each Block request and Block replacement
is O(1) if Q is implemented with a sorted
sequence based on a linked list.

* Because of the constant-time overhead and
extra space for the priority Queue Q, make
this policy less attractive from a practical
point of view.

23-03-2020

19

Virtual Memory

In most Computers, the Physical Main Memory is
not as large as Address Space of the Processor.

A Program, if it does not completely fit into Main
Memory, parts of it currently being executed are
in Main Memory and remaining portion is stored
in Secondary Storage such as Hard disk.

When a new part of program is to be brought into
Main Memory for execution and if the Memory is
full, it must replace another part which is already
is in Main Memory.

As this Secondary Storage is not actually part of
System Memory, so for CPU, the extended
portion of Secondary Storage is Virtual Memory.

Automatically move Program and Data Blocks
into Physical Memory from Secondary
Memory when they are required for
execution.

Virtual Memory is used to Logically extend
the size of Main Memory.

When Virtual Memory is used, the Address
field is Virtual Address or Logical Address.

A special Hardware unit knows as Memory
Management Unit (MMU) translates Virtual
Address into Physical Address.

23-03-2020

20

Processor makes reference to instructions and
data in an address space that is independent of
available Physical Main Memory space.

The binary addresses that Processor issues for
either instructions or data are called Virtual or
Logical addresses.

These addresses are translated into Physical
addresses by a combination of hardware and
software actions.

If a Virtual address refers to a part of program or
data space that is in Physical Memory, then
contents of location in Main Memory are
accessed immediately.

Otherwise, contents of referenced address must
be brought into a suitable location in Memory
before they can be used.

Virtual Memory Organization

Processor

Wirtual address
Y

Data I NMILT

Physical address
r L

Cache

Drata Physical address

Main memory

Iy
DM.A transfer
h |

Disk storage

23-03-2020

21

A special hardware unit, called Memory
Management Unit (MMU), keeps track of
which parts of Virtual Address space are in
Physical Memory.

When desired data or instructions are in Main
Memory, MMU translates Virtual Address into
corresponding Physical Address.

Then, requested Memory access proceeds in
the usual manner.

If data are not in Main Memory, MMU causes
the OS to transfer data from disk to Memory.

Such transfers are done using DMA scheme.

Address Translation

To translate Virtual Addresses into Physical
addresses, assume that all programs and data
consist of fixed-length units called Pages.

Page consists of a Block of words that occupy
contiguous locations in the Main Memory.

Pages range from 2K to 16K bytes in size.

They constitute basic unit of info transferred
between Main Memory and Disk whenever
MMU determines that a transfer is required.

Pages should not be too small, because access
time of a disk is much longer (several mS) than
access time of Main Memory (several nS).

23-03-2020

22

23-03-2020

It takes a large amount of time to locate data
on disk, but once located, data can be
transferred at a rate of several MB per second.

But if Pages are too large, it is possible that a
large portion of a Page may not be used.

Leads to waste of Memory space.

The Virtual-Memory mechanism bridges size
and speed gaps between Main Memory and
Secondary Storage and is usually implemented
in part by Software techniques.

Virtual-Memory Address Translation

Virtual address from processor

|

[]
I Page table address I I Wirtual page number I Offset I

41'

Page table base register

PAGE TABLE

hits in memor ¥ I Page frame I Offset I
L 1

l

Physical address in main memory

23

Paging

This is a Virtual Memory address-translation
method based on the concept of fixed-length
Pages.

Each Virtual Address generated by Processor is
inferred as a Virtual Page Number (high-order
bits) followed by an Offset (low-order bits)
that specifies location of a Byte (or Word)
within a Page.

Information about Main Memory location of
each Page is kept in a Page Table.

This information includes Main Memory
Address where Page is stored and current
status of Page.

An area in Main Memory that can hold one
Page is called a Page Frame.

Starting address of Page Table is kept in a Page
Table Base Register.

By adding Virtual Page number to contents of
this register, address of corresponding entry in
Page Table is obtained.

Contents of this location give starting address
of Page if that Page currently resides in Main
Memory.

23-03-2020

24

Each entry in Page Table also includes some
Control bits that describe Status of Page while
it is in Main Memory.

One bit indicates Validity of Page, that is,
whether the Page is actually loaded in Main
Memory.

It allows OS to invalidate the Page without
actually removing it.

Another bit indicates whether the Page has
been modified during its residency in the
Memory.

This information is needed for the Page to be
written back to disk before it is removed from
Main Memory to make room for another
Page.

Other control bits indicate various restrictions
that may be imposed on accessing the Page.

For example, a program may be given full read
and write permission, or it may be restricted
to read accesses only.

23-03-2020

25

Logical Physical

Address Address
I 1 10000..00

— L3N fd g

CPU :
11111..11
p{
f s
Physical
Memory
Page table

Paging

Translation Lookaside Buffer
Page Table information is used by MMU for every
read and write access.
Ideally, Page Table should be situated within MMU.
Unfortunately, the Page Table may be rather large.

Since MMU is normally implemented as part of
Processor chip, it is impossible to include complete
Table within MMU.

Instead, a copy of only a small portion of Table is
placed within MMU, and the complete Table is
kept in Main Memory.

The portion within MMU consists of entries
corresponding to most recently accessed Pages.

They are stored in a small Table, usually called
Translation Lookaside Buffer (TLB).

23-03-2020

26

TLB functions as a cache for Page Table in
Main Memory.

Each entry in TLB includes a copy of
information in corresponding entry in Page
Table.

In addition, it includes Virtual address of Page,
which is needed to search TLB for a particular
Page.

A possible organization of a TLB uses the
Associative-Mapping technique.

Set-Associative mapped TLBs are also found in
commercial products.

Virtual address from processor

|

I Virtual page number I Offset I

TLB

Virtual page Control Page frame
number bits in memaory

4
"
e \

Miss
Hit

I Page frame I Oifset I

l

Physical address in main memory

23-03-2020

27

* Address translation proceeds as follows:

— Given a Virtual address, MMU looks in TLB
for the referenced Page.

—If Page Table entry for this Page is found in
TLB, Physical address is obtained
immediately.

—If there is a Miss in TLB, then required entry
is obtained from Page Table in Main
Memory and TLB is updated.

 Need to ensure contents of TLB are always
same as contents of Page Tables in Memory.

« When OS changes contents of a Page Table, it
must simultaneously invalidate corresponding
entries in TLB.

* One of the control bits in TLB is provided for
this purpose.

« When an entry is invalidated, TLB acquires
new information from Page Table in Memory
as part of the MMU’s normal response to
Access Misses.

23-03-2020

28

Page Faults

When a program generates an access request to a
Page that is not in the Main Memory, a Page Fault is
said to have occurred.

The entire Page must be brought from the disk into
the Memory before access can proceed.

When it detects a Page fault, the MMU asks the OS
to intervene by raising an Exception (Interrupt).

Processing of program that generated Page fault is
interrupted, and control is transferred to the OS.

OS copies requested Page from disk into Main
Memory.

Since this process involves a long delay, OS may
begin execution of another program whose Pages are
in Main Memory.

When Page transfer is completed, execution of
interrupted program is resumed.

When MMU raises an interrupt to indicate a Page
fault, the instruction that requested Memory
access may have been partially executed.

Need to ensure that interrupted program
continues correctly when it resumes execution.

There are two options:

— Either execution of interrupted instruction continues
from point of interruption, or instruction must be
restarted.

— Design of a particular Processor dictates which of
these two options is used.

23-03-2020

29

Segmentation
Segmentation is also a Memory management
scheme.
It supports the user’s view of the Memory.

The process is divided into variable size
Segments and loaded to the logical Memory
address space.

The Logical address space is the collection of
variable size Segments.

Each Segment has its name and length.

For the execution, the Segments from Logical
Memory space are loaded to the Physical
Memory space.

The address specified by the user contain two
guantities, Segment name and Offset.

The Segments are numbered and referred by
the Segment number instead of Segment
name.

This Segment number is used as an index in
the Segment table, and Offset value decides
the length or limit of the Segment.

The Segment number and the Offset together
combine to generates the address of the
Segment in the Physical Memory space.

23-03-2020

30

23-03-2020

— limit| base}——

Segment
table

| v

trap: Addressing error

Physical
Memory

Segmentation

Key Differences Between Paging and

Segmentation

 The basic difference between Paging and
Segmentation is that a Page is always of fixed
block size whereas, a Segment is of variable
size.

* Paging may lead to Internal Fragmentation as
Page is of fixed block size, but it may happen
that the process does not acquire the entire
block size which will generate the internal
fragment in Memory.

 Segmentation may lead to External
Fragmentation as Memory is filled with
variable sized blocks.

31

In Paging the user only provides a single
integer as the address which is divided by the
hardware into a Page number and Offset.

On the other hands, in Segmentation the user
specifies address in two quantities i.e. Segment
number and Offset.

The size of Page is decided or specified
by hardware.

But, size of Segment is specified by user.

In Paging, Page table maps the logical address to
the Physical address, and it contains base address
of each page stored in the frames of Physical
Memory space.

However, in Segmentation, Segment
table maps Logical address to Physical address,
and it contains Segment number and Offset .

23-03-2020

32

